Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Existing attack investigation solutions for GUI applications suffer from a few limitations such as inaccuracy (because of the dependence explosion problem), requiring instrumentation, and providing very low visibility. Such limitations have hindered their widespread and practical deployment. In this paper, we present UIScope, a novel accurate, instrumentation-free, and visible attack investigation system for GUI applications. The core idea of UIScope is to perform causality analysis on both UI elements/events which represent users' perspective and low-level system events which provide detailed information of what happens under the hood, and then correlate system events with UI events to provide high accuracy and visibility. Long running processes are partitioned to individual UI transitions, to which low-level system events are attributed, making the results accurate. The produced graphs contain (causally related) UI elements with which users are very familiar, making them easily accessible. We deployed UIScope on 7 machines for a week, and also utilized UIScope to conduct an investigation of 6 real-world attacks. Our evaluation shows that compared to existing works, UIScope introduces negligible overhead (less than 1% runtime overhead and 3.05 MB event logs per hour on average) while UIScope can precisely identify attack provenance while offering users thorough visibility into the attack context. 

View More Papers

Trusted Verification of Over-the-Air (OTA) Secure Software Updates on...

Anway Mukherjee, Ryan Gerdes, and Tam Chantem (Virginia Tech)

Read More

Bringing Balance to the Force: Dynamic Analysis of the...

Abdallah Dawoud (CISPA Helmholtz Center for Information Security), Sven Bugiel (CISPA Helmholtz Center for Information Security)

Read More

User Expectations and Understanding of Encrypted DNS Settings

Alexandra Nisenoff, Nick Feamster, Madeleine A Hoofnagle†, Sydney Zink. (University of Chicago and †Northwestern)

Read More

Strong Authentication without Temper-Resistant Hardware and Application to Federated...

Zhenfeng Zhang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, and The Joint Academy of Blockchain Innovation), Yuchen Wang (Chinese Academy of Sciences and University of Chinese Academy of Sciences), Kang Yang (State Key Laboratory of Cryptology)

Read More