Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Existing attack investigation solutions for GUI applications suffer from a few limitations such as inaccuracy (because of the dependence explosion problem), requiring instrumentation, and providing very low visibility. Such limitations have hindered their widespread and practical deployment. In this paper, we present UIScope, a novel accurate, instrumentation-free, and visible attack investigation system for GUI applications. The core idea of UIScope is to perform causality analysis on both UI elements/events which represent users' perspective and low-level system events which provide detailed information of what happens under the hood, and then correlate system events with UI events to provide high accuracy and visibility. Long running processes are partitioned to individual UI transitions, to which low-level system events are attributed, making the results accurate. The produced graphs contain (causally related) UI elements with which users are very familiar, making them easily accessible. We deployed UIScope on 7 machines for a week, and also utilized UIScope to conduct an investigation of 6 real-world attacks. Our evaluation shows that compared to existing works, UIScope introduces negligible overhead (less than 1% runtime overhead and 3.05 MB event logs per hour on average) while UIScope can precisely identify attack provenance while offering users thorough visibility into the attack context. 

View More Papers

Mondrian: Comprehensive Inter-domain Network Zoning Architecture

Jonghoon Kwon (ETH Zürich), Claude Hähni (ETH Zürich), Patrick Bamert (Zürcher Kantonalbank), Adrian Perrig (ETH Zürich)

Read More

PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home...

Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Read More

Ovid: Message-based Automatic Contact Tracing

Leonie Reichert and Samuel Brack (Humboldt University of Berlin); Björn Scheuermann (Humboldt-University of Berlin)

Read More

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Read More