Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington)

An appraisal system is a feedback mechanism that has gained popularity in underground marketplaces. This system allows appraisers, who receive free samples from vendors, to provide assessments (i.e., appraisal reviews) for products in underground marketplaces. In this paper, we present the first measurement study on the appraisal system within underground marketplaces. Specifically, from 17M communication traces from eight marketplaces spanning from Feb 2006 to Mar 2023, we discover 56,229 appraisal reviews posted by 18,701 unique appraisers. We look into the appraisal review ecosystem, revealing five commonly used requirements and merits in the appraiser selection process. These findings indicate that the appraisal system is a well-established and structured process within the underground marketplace ecosystem. Furthermore, we reveal the presence of high-quality and unique cyber threat intelligence (CTI) in appraisal reviews. For example, we identify the geolocations of followers for a social booster and programming languages used for malware. Leveraging our extraction model, which integrates 41 distinct types of CTI, we capture 23,978 artifacts associated with 16,668 (50.2%) appraisal reviews. In contrast, artifacts are found in only 8.9% of listings and 2.7% of non-appraisal reviews. Our study provides valuable insights into this under-explored source of CTI, complementing existing research on threat intelligence gathering.

View More Papers

Inaudible Adversarial Perturbation: Manipulating the Recognition of User Speech...

Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xuancun Lu (Zhejiang University), Zihan Zeng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Automatic Adversarial Adaption for Stealthy Poisoning Attacks in Federated...

Torsten Krauß (University of Würzburg), Jan König (University of Würzburg), Alexandra Dmitrienko (University of Wuerzburg), Christian Kanzow (University of Würzburg)

Read More

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Reverse Engineering of Multiplexed CAN Frames (Long)

Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

Read More