Rui Wen (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Machine learning has revolutionized numerous domains, playing a crucial role in driving advancements and enabling data-centric processes. The significance of data in training models and shaping their performance cannot be overstated. Recent research has highlighted the heterogeneous impact of individual data samples, particularly the presence of valuable data that significantly contributes to the utility and effectiveness of machine learning models. However, a critical question remains unanswered: are these valuable data samples more vulnerable to machine learning attacks? In this work, we investigate the relationship between data importance and machine learning attacks by analyzing five distinct attack types. Our findings reveal notable insights. For example, we observe that high importance data samples exhibit increased vulnerability in certain attacks, such as membership inference and model stealing. These findings also carry practical implications, inspiring researchers to design more efficient attacks. By analyzing the linkage between membership inference vulnerability and data importance, we demonstrate that sample characteristics can be integrated into membership metrics by introducing sample-specific criteria, therefore enhancing the membership inference performance. These findings emphasize the urgent need for innovative defense mechanisms that strike a balance between maximizing utility and safeguarding valuable data against potential exploitation.

View More Papers

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

RContainer: A Secure Container Architecture through Extending ARM CCA...

Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College,…

Read More

Do We Really Need to Design New Byzantine-robust Aggregation...

Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More