Yuqing Yang (The Ohio State University), Yue Zhang (Drexel University), Zhiqiang Lin (The Ohio State University)

Super apps, serving as centralized platforms that manage user information and integrate third-party miniapps, have revolutionized mobile computing but also introduced significant security risks from malicious miniapps. Despite the mandatory miniapp vetting enforced to the built-in miniapp store, the threat of evolving miniapp malware persists, engaging in a continual cat-and-mouse game with platform security measures. However, compared with traditional paradigms such as mobile and web computing, there has been a lack of miniapp malware dataset available for the community to explore, hindering the generation of crucial insights and the development of robust detection techniques. In response to this, this paper addresses the scarcely explored territory of malicious miniapp analysis, dedicating over three year to identifying, dissecting, and examining the risks posed by these miniapps, resulting in the first miniapp malware dataset now available to aid future studies to enhance the security of super app ecosystems.

To build the dataset, our primary focus has been on the WeChat platform, the largest super app, hosting millions of miniapps and serving a billion users. Over an extensive period, we collected over 4.5 million miniapps, identifying a subset (19, 905) as malicious through a rigorous cross-check process: 1) applying static signatures derived from real-world cases, and 2) confirming that the miniapps were delisted and removed from the market by the platform. With these identified samples, we proceed to characterize them, focusing on their lifecycle including propagation, activation, as well as payload execution. Additionally, we analyzed the collected malware samples using real-world cases to demonstrate their practical security impact. Our findings reveal that these malware frequently target user privacy, leverage social network sharing capabilities to disseminate unauthorized services, and manipulate the advertisement-based revenue model to illicitly generate profits. These actions result in significant privacy and financial harm to both users and the platform.

View More Papers

Characterizing the Impact of Audio Deepfakes in the Presence...

Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More

Cross-Origin Web Attacks via HTTP/2 Server Push and Signed...

Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

Read More

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More