Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Advanced Persistent Threats (APTs) are difficult to detect due to their “low-and-slow” attack patterns and frequent use of zero-day exploits. We present UNICORN, an anomaly-based APT detector that effectively leverages data provenance analysis. From modeling to detection, UNICORN tailors its design specifically for the unique characteristics of APTs. Through extensive yet time-efficient graph analysis, UNICORN explores provenance graphs that provide rich contextual and historical information to identify stealthy anomalous activities without pre-defined attack signatures. Using a graph sketching technique, it summarizes long-running system execution with space efficiency to combat slow-acting attacks that take place over a long time span. UNICORN further improves its detection capability using a novel modeling approach to understand long-term behavior as the system evolves. Our evaluation shows that UNICORN outperforms an existing state-of-the-art APT detection system and detects real-life APT scenarios with high accuracy.

View More Papers

Detecting Probe-resistant Proxies

Sergey Frolov (University of Colorado Boulder), Jack Wampler (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

Designing a Better Browser for Tor with BLAST

Tao Wang (Hong Kong University of Science and Technology)

Read More

Automated Cross-Platform Reverse Engineering of CAN Bus Commands From...

Haohuang Wen (The Ohio State University), Qingchuan Zhao (The Ohio State University), Qi Alfred Chen (University of California, Irvine), Zhiqiang Lin (The Ohio State University)

Read More

Measuring the Deployment of Network Censorship Filters at Global...

Ram Sundara Raman (University of Michigan), Adrian Stoll (University of Michigan), Jakub Dalek (Citizen Lab, University of Toronto), Reethika Ramesh (University of Michigan), Will Scott (Independent), Roya Ensafi (University of Michigan)

Read More