Derek Leung (MIT CSAIL), Adam Suhl (MIT CSAIL), Yossi Gilad (MIT CSAIL), Nickolai Zeldovich (MIT CSAIL)

Decentralized cryptocurrencies rely on participants to keep track of the state of the system in order to verify new transactions. As the number of users and transactions grows, this requirement becomes a significant burden, requiring users to download, verify, and store a large amount of data to participate.

Vault is a new cryptocurrency design based on Algorand that minimizes these storage and bootstrapping costs for participants. Vault’s design is based on Algorand’s proof-of-stake consensus protocol and uses several techniques to achieve its goals. First, Vault decouples the storage of recent transactions from the storage of account balances, which enables Vault to delete old account state. Second, Vault allows sharding state across participants in a way that preserves strong security guarantees. Finally, Vault introduces the notion of stamping certificates, which allow a new client to catch up securely and efficiently in a proof-of-stake system without having to verify every single block.

Experiments with a prototype implementation of Vault’s data structures show that Vault’s design reduces the bandwidth cost of joining the network as a full client by 99.7% compared to Bitcoin and 90.5% compared to Ethereum when downloading a ledger containing 500 million transactions.

View More Papers

Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks

Michael Rodler (University of Duisburg-Essen), Wenting Li (NEC Laboratories, Germany), Ghassan O. Karame (NEC Laboratories, Germany), Lucas Davi (University of Duisburg-Essen)

Read More

RFDIDS: Radio Frequency-based Distributed Intrusion Detection System for the...

Tohid Shekari (ECE, Georgia Tech), Christian Bayens (ECE, Georgia Tech), Morris Cohen (ECE, Georgia Tech), Lukas Graber (ECE, Georgia Tech), Raheem Beyah (ECE, Georgia Tech)

Read More

CodeAlchemist: Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript...

HyungSeok Han (KAIST), DongHyeon Oh (KAIST), Sang Kil Cha (KAIST)

Read More

Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet

Stephen Herwig (University of Maryland), Katura Harvey (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), George Hughey (University of Maryland), Richard Roberts (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), Dave Levin (University of Maryland)

Read More