Quan Yuan (Zhejiang University), Zhikun Zhang (Zhejiang University), Linkang Du (Xi'an Jiaotong University), Min Chen (Vrije Universiteit Amsterdam), Mingyang Sun (Peking University), Yunjun Gao (Zhejiang University), Shibo He (Zhejiang University), Jiming Chen (Zhejiang University)

Video recognition systems are increasingly being deployed in daily life, such as content recommendation and security monitoring. To enhance video recognition development, many institutions have released high-quality public datasets with open-source licenses for training advanced models. At the same time, these datasets are also susceptible to misuse and infringement. Dataset copyright auditing is an effective solution to identify such unauthorized use. However, existing dataset copyright solutions primarily focus on the image domain; the complex nature of video data leaves dataset copyright auditing in the video domain unexplored. Specifically, video data introduces an additional temporal dimension, which poses significant challenges to the effectiveness and stealthiness of existing methods.

In this paper, we propose VICTOR, the first dataset copyright auditing approach for video recognition systems. We develop a general and stealthy sample modification strategy that enhances the output discrepancy of the target model. By modifying only a small proportion of samples (e.g., 1%), VICTOR amplifies the impact of published modified samples on the prediction behavior of the target models. Then, the difference in the model’s behavior for published modified and unpublished original samples can serve as a key basis for dataset auditing. Extensive experiments on multiple models and datasets highlight the superiority of VICTOR. Finally, we show that VICTOR is robust in the presence of several perturbation mechanisms to the training videos or the target models.

View More Papers

CoordMail: Exploiting SMTP Timeout and Command Interaction to Coordinate...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Zhongguancun Laboratory), Baojun Liu (Tsinghua University), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Jun Shao (Zhejiang Gongshang University; Zhejiang Key Laboratory of Big Data and Future E-Commerce Technology)

Read More

Phishing in Wonderland: Evaluating Learning-Based Ethereum Phishing Transaction Detection...

Ahod Alghuried (University of Central Florida), David Mohaisen (University of Central Florida)

Read More

Discovering Blind-Trust Vulnerabilities in PLC Binaries via State Machine...

Fangzhou Dong (Arizona State University), Arvind S Raj (Arizona State University), Efrén López-Morales (New Mexico State University), Siyu Liu (Arizona State University), Yan Shoshitaishvili (Arizona State University), Tiffany Bao (Arizona State University), Adam Doupé (Arizona State University), Muslum Ozgur Ozmen (Arizona State University), Ruoyu Wang (Arizona State University)

Read More