Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

We present textit{Wallbleed}, a buffer over-read vulnerability that existed in the DNS injection subsystem of the Great Firewall of China. Wallbleed caused certain nation-wide censorship middleboxes to reveal up to 125 bytes of their memory when censoring a crafted DNS query. It afforded a rare insight into one of the Great Firewall's well-known network attacks, namely DNS injection, in terms of its internal architecture and the censor's operational behaviors.

To understand the causes and implications of Wallbleed, we conducted longitudinal and Internet-wide measurements for over two years from October 2021. We
(1) reverse-engineered the injector's parsing logic,
(2) evaluated what information was leaked and how Internet users inside and outside of China were affected, and
(3) monitored the censor's patching behaviors over time.
We identified possible internal traffic of the censorship system, analyzed its memory management and load-balancing mechanisms, and observed process-level changes in an injector node. We employed a new side channel to distinguish the injector's multiple processes to assist our analysis.
Our monitoring revealed that the censor coordinated an incorrect patch for Wallbleed in November 2023 and fully patched it in March 2024.

Wallbleed exemplifies that the harm censorship middleboxes impose on Internet users is even beyond their obvious infringement of freedom of expression. When implemented poorly, it also imposes severe privacy and confidentiality risks to Internet users.

View More Papers

Can Public IP Blocklists Explain Internet Radiation?

Simone Cossaro (University of Trieste), Damiano Ravalico (University of Trieste), Rodolfo Vieira Valentim (University of Turin), Martino Trevisan (University of Trieste), Idilio Drago (University of Turin)

Read More

cozy: Comparative Symbolic Execution for Binary Programs

Caleb Helbling, Graham Leach-Krouse, Sam Lasser, Greg Sullivan (Draper)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More

AegisSat: A Satellite Cybersecurity Testbed

Roee Idan, Roy Peled, Aviel Ben Siman Tov, Eli Markus, Boris Zadov, Ofir Chodeda, Yohai Fadida (Ben Gurion University of the Negev), Oliver Holschke, Jan Plachy (T-Labs (Research & Innovation)), Yuval Elovici, Asaf Shabtai (Ben Gurion University of the Negev)

Read More