Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

We present textit{Wallbleed}, a buffer over-read vulnerability that existed in the DNS injection subsystem of the Great Firewall of China. Wallbleed caused certain nation-wide censorship middleboxes to reveal up to 125 bytes of their memory when censoring a crafted DNS query. It afforded a rare insight into one of the Great Firewall's well-known network attacks, namely DNS injection, in terms of its internal architecture and the censor's operational behaviors.

To understand the causes and implications of Wallbleed, we conducted longitudinal and Internet-wide measurements for over two years from October 2021. We
(1) reverse-engineered the injector's parsing logic,
(2) evaluated what information was leaked and how Internet users inside and outside of China were affected, and
(3) monitored the censor's patching behaviors over time.
We identified possible internal traffic of the censorship system, analyzed its memory management and load-balancing mechanisms, and observed process-level changes in an injector node. We employed a new side channel to distinguish the injector's multiple processes to assist our analysis.
Our monitoring revealed that the censor coordinated an incorrect patch for Wallbleed in November 2023 and fully patched it in March 2024.

Wallbleed exemplifies that the harm censorship middleboxes impose on Internet users is even beyond their obvious infringement of freedom of expression. When implemented poorly, it also imposes severe privacy and confidentiality risks to Internet users.

View More Papers

The Guardians of Name Street: Studying the Defensive Registration...

Boladji Vinny Adjibi (Georgia Tech), Athanasios Avgetidis (Georgia Tech), Manos Antonakakis (Georgia Tech), Michael Bailey (Georgia Tech), Fabian Monrose (Georgia Tech)

Read More

UI-CTX: Understanding UI Behaviors with Code Contexts for Mobile...

Jiawei Li (Beihang University & National University of Singapore), Jiahao Liu (National University of Singapore), Jian Mao (Beihang University), Jun Zeng (National University of Singapore), Zhenkai Liang (National University of Singapore)

Read More

Safety Misalignment Against Large Language Models

Yichen Gong (Tsinghua University), Delong Ran (Tsinghua University), Xinlei He (Hong Kong University of Science and Technology (Guangzhou)), Tianshuo Cong (Tsinghua University), Anyu Wang (Tsinghua University), Xiaoyun Wang (Tsinghua University)

Read More