Weili Wang (Southern University of Science and Technology), Honghan Ji (ByteDance Inc.), Peixuan He (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology)

The advancement of trusted execution environments (TEEs) has enabled the confidential computing paradigm and created new application scenarios for WebAssembly (Wasm). "Wasm+TEE" designs achieve in-enclave multi-tenancy with strong isolation, facilitating concurrent execution of untrusted code instances from multiple users. However, the linear memory model of Wasm lacks efficient cross-module data sharing and fine-grained memory access control, significantly restricting its applications in certain confidential computing scenarios where secure data sharing is essential (e.g., confidential stateful FaaS and data marketplaces). In this paper, we propose WAVEN (WebAssembly Memory Virtualization for ENclaves), a novel WebAssembly memory virtualization scheme, to enable memory sharing among Wasm modules and page-level access control. We implement WAVEN atop WAMR, a popular Wasm runtime for TEEs, and empirically demonstrate its efficiency and effectiveness. To the best of our knowledge, our work represents the first approach that enables cross-module memory sharing with fine-grained memory access control in Wasm.

View More Papers

EvoCrawl: Exploring Web Application Code and State using Evolutionary...

Xiangyu Guo (University of Toronto), Akshay Kawlay (University of Toronto), Eric Liu (University of Toronto), David Lie (University of Toronto)

Read More

Towards Better CFG Layouts

Jack Royer (CentraleSupélec), Frédéric TRONEL (CentraleSupélec, Inria, CNRS, University of Rennes), Yaëlle Vinçont (Univ Rennes, Inria, CNRS, IRISA)

Read More

QMSan: Efficiently Detecting Uninitialized Memory Errors During Fuzzing

Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More