Geoff Twardokus (Rochester Institute of Technology), Nina Bindel (SandboxAQ), Hanif Rahbari (Rochester Institute of Technology), Sarah McCarthy (University of Waterloo)

We tackle the atypical challenge of supporting post-quantum cryptography (PQC) and its significant overhead in safety-critical vehicle-to-vehicle (V2V) communications, dealing with strict overhead and latency restrictions within the limited radio spectrum for V2V. For example, we show that the current use of spectrum to support signature verification in V2V makes it nearly impossible to adopt PQC. Accordingly, we propose a scheduling technique for message signing certificate transmissions (which we find are currently up to 93% redundant) that learns to adaptively reduce the use of radio spectrum. In combination, we design the first integration of PQC and V2V, which satisfies the above stringent constraints given the available spectrum. Specifically, we analyze the three PQ signature algorithms selected for standardization by NIST, as well as XMSS (RFC 8391), and propose a Partially Hybrid authentication protocol—a tailored fusion of classical cryptography and PQC—for use in the V2V ecosystem during the nascent transition period we outline towards fully PQ V2V. Our provably secure protocol efficiently balances security and performance, as demonstrated experimentally with software-defined radios (USRPs), commercial V2V devices, and road traffic and V2V simulators. We show our joint transmission scheduling optimization and Partially Hybrid design are scalable and reliable under realistic conditions, adding a negligible average delay (0.39 ms per message) against the current state-of-the-art.

View More Papers

Compensating Removed Frequency Components: Thwarting Voice Spectrum Reduction Attacks

Shu Wang (George Mason University), Kun Sun (George Mason University), Qi Li (Tsinghua University)

Read More

FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning Attacks...

Hossein Fereidooni (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More