Jinho Jung (Georgia Institute of Technology), Stephen Tong (Georgia Institute of Technology), Hong Hu (Pennsylvania State University), Jungwon Lim (Georgia Institute of Technology), Yonghwi Jin (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Fuzzing is an emerging technique to automatically validate programs and uncover bugs. It has been widely used to test many programs and has found thousands of security vulnerabilities. However, existing fuzzing efforts are mainly centered around Unix-like systems, as Windows imposes unique challenges for fuzzing: a closed-source ecosystem, the heavy use of graphical interfaces and the lack of fast process cloning machinery.

In this paper, we propose two solutions to address the challenges Windows fuzzing faces. Our system, WINNIE, first tries to synthesize a harness for the application, a simple program that directly invokes target functions, based on sample executions. It then tests the harness, instead of the original complicated program, using an efficient implementation of fork on Windows. Using these techniques, WINNIE can bypass irrelevant GUI code to test logic deep within the application. We used WINNIE to fuzz 59 closed-source Windows binaries, and it successfully generated valid fuzzing harnesses for all of them. In our evaluation, WINNIE can support 2.2x more programs than existing Windows fuzzers could, and identified 3.9x more program states and achieved 26.6x faster execution. In total, WINNIE found 61 unique bugs in 32 Windows binaries.

View More Papers

Favocado: Fuzzing the Binding Code of JavaScript Engines Using...

Sung Ta Dinh (Arizona State University), Haehyun Cho (Arizona State University), Kyle Martin (North Carolina State University), Adam Oest (PayPal, Inc.), Kyle Zeng (Arizona State University), Alexandros Kapravelos (North Carolina State University), Gail-Joon Ahn (Arizona State University and Samsung Research), Tiffany Bao (Arizona State University), Ruoyu Wang (Arizona State University), Adam Doupe (Arizona State University),…

Read More

Censored Planet: An Internet-wide, Longitudinal Censorship Observatory

R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi (University of Michigan)

Read More

On the Insecurity of SMS One-Time Password Messages against...

Zeyu Lei (Purdue University), Yuhong Nan (Purdue University), Yanick Fratantonio (Eurecom & Cisco Talos), Antonio Bianchi (Purdue University)

Read More

ROV++: Improved Deployable Defense against BGP Hijacking

Reynaldo Morillo (University of Connecticut), Justin Furuness (University of Connecticut), Cameron Morris (University of Connecticut), James Breslin (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut)

Read More