Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Image data have been extensively used in Deep Neural Network (DNN) tasks in various scenarios, e.g., autonomous driving and medical image analysis, which incurs significant privacy concerns. Existing privacy protection techniques are unable to efficiently protect such data. For example, Differential Privacy (DP) that is an emerging technique protects data with strong privacy guarantee cannot effectively protect visual features of exposed image dataset. In this paper, we propose a novel privacy-preserving framework VisualMixer that protects the training data of visual DNN tasks by pixel shuffling, while not injecting any noises. VisualMixer utilizes a new privacy metric called Visual Feature Entropy (VFE) to effectively quantify the visual features of an image from both biological and machine vision aspects. In VisualMixer, we devise a task-agnostic image obfuscation method to protect the visual privacy of data for DNN training and inference. For each image, it determines regions for pixel shuffling in the image and the sizes of these regions according to the desired VFE. It shuffles pixels both in the spatial domain and in the chromatic channel space in the regions without injecting noises so that it can prevent visual features from being discerned and recognized, while incurring negligible accuracy loss. Extensive experiments on real-world datasets demonstrate that VisualMixer can effectively preserve the visual privacy with negligible accuracy loss, i.e., at average 2.35 percentage points of model accuracy loss, and almost no performance degradation on model training.

View More Papers

Attributions for ML-based ICS Anomaly Detection: From Theory to...

Clement Fung (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More

Scrappy: SeCure Rate Assuring Protocol with PrivacY

Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Read More

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More