Mohd Sabra (University of Texas at San Antonio), Anindya Maiti (University of Oklahoma), Murtuza Jadliwala (University of Texas at San Antonio)

Due to recent world events, video calls have become the new norm for both personal and professional remote communication. However, if a participant in a video call is not careful, he/she can reveal his/her private information to others in the call. In this paper, we design and evaluate an attack framework to infer one type of such private information from the video stream of a call -- keystrokes, i.e., text typed during the call. We evaluate our video-based keystroke inference framework using different experimental settings, such as different webcams, video resolutions, keyboards, clothing, and backgrounds. Our high keystroke inference accuracies under commonly occurring experimental settings highlight the need for awareness and countermeasures against such attacks. Consequently, we also propose and evaluate effective mitigation techniques that can automatically protect users when they type during a video call.

View More Papers

KUBO: Precise and Scalable Detection of User-triggerable Undefined Behavior...

Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Read More

Dinosaur Resurrection: PowerPC Binary Patching for Base Station Analysis

Uwe Muller, Eicke Hauck, Timm Welz, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstadt)

Read More

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More

My Past Dictates my Present: Relevance, Exposure, and Influence...

Shujaat Mirza, Christina Pöpper (New York University)

Read More