Mohd Sabra (University of Texas at San Antonio), Anindya Maiti (University of Oklahoma), Murtuza Jadliwala (University of Texas at San Antonio)

Due to recent world events, video calls have become the new norm for both personal and professional remote communication. However, if a participant in a video call is not careful, he/she can reveal his/her private information to others in the call. In this paper, we design and evaluate an attack framework to infer one type of such private information from the video stream of a call -- keystrokes, i.e., text typed during the call. We evaluate our video-based keystroke inference framework using different experimental settings, such as different webcams, video resolutions, keyboards, clothing, and backgrounds. Our high keystroke inference accuracies under commonly occurring experimental settings highlight the need for awareness and countermeasures against such attacks. Consequently, we also propose and evaluate effective mitigation techniques that can automatically protect users when they type during a video call.

View More Papers

Vision-Based Two-Factor Authentication & Localization Scheme for Autonomous Vehicles

Anas Alsoliman, Marco Levorato, and Qi Alfred Chen (UC Irvine)

Read More

Reinforcement Learning-based Hierarchical Seed Scheduling for Greybox Fuzzing

Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Read More

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More

Empirical Scanning Analysis of Censys and Shodan

Christopher Bennett, AbdelRahman Abdou, and Paul C. van Oorschot (School of Computer Science, Carleton University, Canada)

Read More