Hadi Abdullah (Visa Research), Aditya Karlekar (University of Florida), Saurabh Prasad (University of Florida), Muhammad Sajidur Rahman (University of Florida), Logan Blue (University of Florida), Luke A. Bauer (University of Florida), Vincent Bindschaedler (University of Florida), Patrick Traynor (University of Florida)

Audio CAPTCHAs are supposed to provide a strong defense for online resources; however, advances in speech-to-text mechanisms have rendered these defenses ineffective. Audio CAPTCHAs cannot simply be abandoned, as they are specifically named by the W3C as important enablers of accessibility. Accordingly, demonstrably more robust audio CAPTCHAs are important to the future of a secure and accessible Web. We look to recent literature on attacks on speech-to-text systems for inspiration for the construction of robust, principle-driven audio defenses. We begin by comparing 20 recent attack papers, classifying and measuring their suitability to serve as the basis of new "robust to transcription" but "easy for humans to understand" CAPTCHAs. After showing that none of these attacks alone are sufficient, we propose a new mechanism that is both comparatively intelligible (evaluated through a user study) and hard to automatically transcribe (i.e., $P({rm transcription}) = 4 times 10^{-5}$). We also demonstrate that our audio samples have a high probability of being detected as CAPTCHAs when given to speech-to-text systems ($P({rm evasion}) = 1.77 times 10^{-4}$). Finally, we show that our method is robust to WaveGuard, a popular mechanism designed to defeat adversarial examples (and enable ASRs to output the original transcript instead of the adversarial one). We show that our method can break WaveGuard with a 99% success rate. In so doing, we not only demonstrate a CAPTCHA that is approximately four orders of magnitude more difficult to crack, but that such systems can be designed based on the insights gained from attack papers using the differences between the ways that humans and computers process audio.

View More Papers

OBSan: An Out-Of-Bound Sanitizer to Harden DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

PPA: Preference Profiling Attack Against Federated Learning

Chunyi Zhou (Nanjing University of Science and Technology), Yansong Gao (Nanjing University of Science and Technology), Anmin Fu (Nanjing University of Science and Technology), Kai Chen (Chinese Academy of Science), Zhiyang Dai (Nanjing University of Science and Technology), Zhi Zhang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Yuqing Zhang (University of Chinese Academy of Science)

Read More

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum)

Read More