Chengkun Wei (Zhejiang University), Wenlong Meng (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University), Min Chen (CISPA Helmholtz Center for Information Security), Minghu Zhao (Zhejiang University), Wenjing Fang (Ant Group), Lei Wang (Ant Group), Zihui Zhang (Zhejiang University), Wenzhi Chen (Zhejiang University)

*Prompt-tuning* has emerged as an attractive paradigm for deploying large-scale language models due to its strong downstream task performance and efficient multitask serving ability. Despite its wide adoption, we empirically show that prompt-tuning is vulnerable to downstream task-agnostic backdoors, which reside in the pretrained models and can affect arbitrary downstream tasks. The state-of-the-art backdoor detection approaches cannot defend against task-agnostic backdoors since they hardly converge in reversing the backdoor triggers. To address this issue, we propose LMSanitator, a novel approach for detecting and removing task-agnostic backdoors on Transformer models. Instead of directly inverting the triggers, LMSanitator aims to invert the *predefined attack vectors* (pretrained models' output when the input is embedded with triggers) of the task-agnostic backdoors, which achieves much better convergence performance and backdoor detection accuracy. LMSanitator further leverages prompt-tuning’s property of freezing the pretrained model to perform accurate and fast output monitoring and input purging during the inference phase. Extensive experiments on multiple language models and NLP tasks illustrate the effectiveness of LMSanitator. For instance, LMSanitator achieves 92.8% backdoor detection accuracy on 960 models and decreases the attack success rate to less than 1% in most scenarios.

View More Papers

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More

CP-IoT: A Cross-Platform Monitoring System for Smart Home

Hai Lin (Tsinghua University), Chenglong Li (Tsinghua University), Jiahai Yang (Tsinghua University), Zhiliang Wang (Tsinghua University), Linna Fan (National University of Defense Technology), Chenxin Duan (Tsinghua University)

Read More