Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Understanding the vulnerability of virtual reality (VR) is crucial for protecting sensitive data and building user trust in VR ecosystems. Previous attacks have demonstrated the feasibility of inferring VR keystrokes inside head-mounted displays (HMDs) by recording side-channel signals generated during user-HMD interactions. However, these attacks are heavily constrained by the physical layout or victim pose in the attack scenario since the recording device must be strictly positioned and oriented in a particular way with respect to the victim. In this paper, we unveil a placement-flexible keystroke inference attack in VR by eavesdropping the clicking sounds of the moving hand controller during keystrokes. The malicious recording smartphone can be placed anywhere surrounding the victim, making the attack more flexible and practical to deploy in VR environments. As the first acoustic attack in VR, our system, Heimdall, overcomes unique challenges unaddressed by previous acoustic attacks on physical keyboards and touchscreens. These challenges include differentiating sounds in a 3D space, adaptive mapping between keystroke sound and key in varying recording placement, and handling occasional hand rotations. Experiments with 30 participants show that Heimdall achieves key inference accuracy of 96.51% and top-5 accuracy of 85.14%-91.22% for inferring passwords with 4-8 characters. Heimdall is also robust under various practical impacts such as smartphone-user placement, attack environments, hardware models, and victim conditions.

View More Papers

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

Not your Type! Detecting Storage Collision Vulnerabilities in Ethereum...

Nicola Ruaro (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Robert McLaughlin (University of California, Santa Barbara), Ilya Grishchenko (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Read More

TrustSketch: Trustworthy Sketch-based Telemetry on Cloud Hosts

Zhuo Cheng (Carnegie Mellon University), Maria Apostolaki (Princeton University), Zaoxing Liu (University of Maryland), Vyas Sekar (Carnegie Mellon University)

Read More

Sticky Fingers: Resilience of Satellite Fingerprinting against Jamming Attacks

Joshua Smailes (University of Oxford), Edd Salkield (University of Oxford), Sebastian Köhler (University of Oxford), Simon Birnbach (University of Oxford), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Ivan Martinovic (University of Oxford)

Read More