Chang Liu (University of Science and Technology of China), Jie Zhang (Nanyang Technological University), Tianwei Zhang (Nanyang Technological University), Xi Yang (University of Science and Technology of China), Weiming Zhang (University of Science and Technology of China), NengHai Yu (University of Science and Technology of China)

Nowadays, it is common to release audio content to the public, for social sharing or commercial purposes. However, with the rise of voice cloning technology, attackers have the potential to easily impersonate a specific person by utilizing his publicly released audio without any permission. Therefore, it becomes significant to detect any potential misuse of the released audio content and protect its timbre from being impersonated.

To this end, we introduce a novel concept, "Timbre Watermarking", which embeds watermark information into the target individual's speech, eventually defeating the voice cloning attacks. However, there are two challenges: 1) robustness: the attacker can remove the watermark with common speech preprocessing before launching voice cloning attacks; 2) generalization: there are a variety of voice cloning approaches for the attacker to choose, making it hard to build a general defense against all of them.

To address these challenges, we design an end-to-end voice cloning-resistant detection framework. The core idea of our solution is to embed the watermark into the frequency domain, which is inherently robust against common data processing methods. A repeated embedding strategy is adopted to further enhance the robustness. To acquire generalization across different voice cloning attacks, we modulate their shared process and integrate it into our framework as a distortion layer. Experiments demonstrate that the proposed timbre watermarking can defend against different voice cloning attacks, exhibit strong resistance against various adaptive attacks (e.g., reconstruction-based removal attacks, watermark overwriting attacks), and achieve practicality in real-world services such as PaddleSpeech, Voice-Cloning-App, and so-vits-svc. In addition, ablation studies are also conducted to verify the effectiveness of our design. Some audio samples are available at https://timbrewatermarking.github.io/samples.

View More Papers

CBAT: A Comparative Binary Analysis Tool

Chloe Fortuna (STR), JT Paasch (STR), Sam Lasser (Draper), Philip Zucker (Draper), Chris Casinghino (Jane Street), Cody Roux (AWS)

Read More

VETEOS: Statically Vetting EOSIO Contracts for the “Groundhog Day”...

Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

Read More

Crafter: Facial Feature Crafting against Inversion-based Identity Theft on...

Shiming Wang (Shanghai Jiao Tong University), Zhe Ji (Shanghai Jiao Tong University), Liyao Xiang (Shanghai Jiao Tong University), Hao Zhang (Shanghai Jiao Tong University), Xinbing Wang (Shanghai Jiao Tong University), Chenghu Zhou (Chinese Academy of Sciences), Bo Li (Hong Kong University of Science and Technology)

Read More

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More