Gorka Abad (Radboud University & Ikerlan Technology Research Centre), Oguzhan Ersoy (Radboud University), Stjepan Picek (Radboud University & Delft University of Technology), Aitor Urbieta (Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA))

Deep neural networks (DNNs) have demonstrated remarkable performance across various tasks, including image and speech recognition. However, maximizing the effectiveness of DNNs requires meticulous optimization of numerous hyperparameters and network parameters through training. Moreover, high-performance DNNs entail many parameters, which consume significant energy during training. To overcome these challenges, researchers have turned to spiking neural networks (SNNs), which offer enhanced energy efficiency and biologically plausible data processing capabilities, rendering them highly suitable for sensory data tasks, particularly in neuromorphic data. Despite their advantages, SNNs, like DNNs, are susceptible to various threats, including adversarial examples and backdoor attacks. Yet, the field of SNNs still needs to be explored in terms of understanding and countering these attacks.

This paper delves into backdoor attacks in SNNs using neuromorphic datasets and diverse triggers. Specifically, we explore backdoor triggers within neuromorphic data that can manipulate their position and color, providing a broader scope of possibilities than conventional triggers in domains like images. We present various attack strategies, achieving an attack success rate of up to 100% while maintaining a negligible impact on clean accuracy.
Furthermore, we assess these attacks' stealthiness, revealing that our most potent attacks possess significant stealth capabilities.

Lastly, we adapt several state-of-the-art defenses from the image domain, evaluating their efficacy on neuromorphic data and uncovering instances where they fall short, leading to compromised performance.

View More Papers

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Compromising Industrial Processes using Web-Based Programmable Logic Controller Malware

Ryan Pickren (Georgia Institute of Technology), Tohid Shekari (Georgia Institute of Technology), Saman Zonouz (Georgia Institute of Technology), Raheem Beyah (Georgia Institute of Technology)

Read More

AVMON: Securing Autonomous Vehicles by Learning Control Invariants and...

Ahmed Abdo, Sakib Md Bin Malek, Xuanpeng Zhao, Nael Abu-Ghazaleh (University of California, Riverside)

Read More

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More