Rui Duan (University of South Florida), Zhe Qu (Central South University), Leah Ding (American University), Yao Liu (University of South Florida), Zhuo Lu (University of South Florida)

Audio adversarial examples (AEs) have posed significant security challenges to real-world speaker recognition systems. Most black-box attacks still require certain information from the speaker recognition model to be effective (e.g., keeping probing and requiring the knowledge of similarity scores). This work aims to push the practicality of the black-box attacks by minimizing the attacker's knowledge about a target speaker recognition model. Although it is not feasible for an attacker to succeed with completely zero knowledge, we assume that the attacker only knows a short (or a few seconds) speech sample of a target speaker. Without any probing to gain further knowledge about the target model, we propose a new mechanism, called parrot training, to generate AEs against the target model. Motivated by recent advancements in voice conversion, we propose to use the one short sentence knowledge to generate more synthetic speech samples that sound like the target speaker, called parrot speech. Then, we use these parrot speech samples to train a parrot-trained (PT) surrogate model for the attacker. Under a joint transferability and perception framework, we investigate different ways to generate AEs on the PT model (called PT-AEs) to ensure the PT-AEs can be generated with high transferability to a black-box target model with good human perceptual quality. Real-world experiments show that the resultant PT-AEs achieve the attack success rates of 45.8%-80.8% against the open-source models in the digital-line scenario and 47.9%-58.3% against smart devices, including Apple HomePod (Siri), Amazon Echo, and Google Home, in the over-the-air scenario.

View More Papers

Towards generic backward-compatible software upgrades for COSPAS-SARSAT EPIRB 406...

Ahsan Saleem (University of Jyväskylä, Finland), Andrei Costin (University of Jyväskylä, Finland), Hannu Turtiainen (University of Jyväskylä, Finland), Timo Hämäläinen (University of Jyväskylä, Finland)

Read More

Low-Quality Training Data Only? A Robust Framework for Detecting...

Yuqi Qing (Tsinghua University), Qilei Yin (Zhongguancun Laboratory), Xinhao Deng (Tsinghua University), Yihao Chen (Tsinghua University), Zhuotao Liu (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Jia Zhang (Tsinghua University), Qi Li (Tsinghua University)

Read More

ORL-AUDITOR: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Mingyang Sun (Zhejiang University), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University)

Read More

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More