Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Remote attestation (RA) protocols have been widely used to evaluate the integrity of software on remote devices. Currently, the state-of-the-art RA protocols lack a crucial feature: transparency. This means that the details of the final attestation verification are not openly accessible or verifiable by the public. Furthermore, the interactivity of these protocols often limits attestation to trusted parties who possess privileged access to confidential device data, such as pre-shared keys and initial measurements. These constraints impede the widespread adoption of these protocols in various applications.

In this paper, we introduce zRA, a non-interactive, transparent, and publicly provable RA protocol based on zkSNARKs. zRA enables verification of device attestations without the need for pre-shared keys or access to confidential data, ensuring a trustless and open attestation process. This eliminates the reliance on online services or secure storage on the verifier side. Moreover, zRA does not impose any additional security assumptions beyond the fundamental cryptographic schemes and the essential trust anchor components on the prover side (i.e., ROM and MPU). The zero-knowledge attestation proofs generated by devices have constant size regardless of the network complexity and number of attestations. Moreover, these proofs do not reveal sensitive information regarding internal states of the device, allowing verification by anyone in a public and auditable manner. We conduct an extensive security analysis and demonstrate scalability of zRA compared to prior work. Our analysis suggests that zRA excels especially in peer-to-peer and Pub/Sub network structures. To validate the practicality, we implement an open-source prototype of zRA using the Circom language. We show that zRA can be securely deployed on public permissionless blockchains, serving as an archival platform for attestation data to achieve resilience against DoS attacks.

View More Papers

Work-in-Progress: A Large-Scale Long-term Analysis of Online Fraud across...

Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Read More

Resilient Routing for Low Earth Orbit Mega-Constellation Networks

Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Read More

Improving the Robustness of Transformer-based Large Language Models with...

Lujia Shen (Zhejiang University), Yuwen Pu (Zhejiang University), Shouling Ji (Zhejiang University), Changjiang Li (Penn State), Xuhong Zhang (Zhejiang University), Chunpeng Ge (Shandong University), Ting Wang (Penn State)

Read More

WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers...

Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

Read More