Fannv He (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yan Jia (DISSec, College of Cyber Science, Nankai University, China), Jiayu Zhao (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yue Fang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Jice Wang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Mengyue Feng (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Peng Liu (College of Information Sciences and Technology, Pennsylvania State University, USA), Yuqing Zhang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China; Hangzhou Institute of Technology & School of Cyber Engineering, Xidian University, China; School of Cyberspace Security, Hainan University, China)

Authentication is one of the established practices to ensure user security. Personally identifiable information (PII), such as national identity card number (ID number) and bank card number, is used widely in China's mobile apps as an additional secret to authenticate users, i.e., PII-as-Factor Authentication (PaFA). In this paper, we found a new threat that calls on the cautiousness of PaFA: the simultaneous usages and business-related interactions of apps make the authentication strength of a target app weaker than designed. An adversary, who knows fewer authentication factors (only SMS OTP) than a PaFA system required, can break the authentication by gathering information or abusing cross-app authorization from other apps. To systematically study the potential risks, we proposed a semi-automatic system, MAGGIE, to evaluate the security of PaFA in target apps. By measuring 234 real-world apps in Chinese app markets with the help of MAGGIE, we found 75.4% of apps that deployed PaFA can be bypassed, including the popular and sensitive ones (e.g., AliPay, WeChat, UnionPay), leading to severe consequences like hijack user accounts and making unauthorized purchases. Additionally, we conducted a survey to demonstrate the practical implications of the new risk on users. Finally, we reported our findings to the vendors and provided several mitigation measures.

View More Papers

Crafter: Facial Feature Crafting against Inversion-based Identity Theft on...

Shiming Wang (Shanghai Jiao Tong University), Zhe Ji (Shanghai Jiao Tong University), Liyao Xiang (Shanghai Jiao Tong University), Hao Zhang (Shanghai Jiao Tong University), Xinbing Wang (Shanghai Jiao Tong University), Chenghu Zhou (Chinese Academy of Sciences), Bo Li (Hong Kong University of Science and Technology)

Read More

IdleLeak: Exploiting Idle State Side Effects for Information Leakage

Fabian Rauscher (Graz University of Technology), Andreas Kogler (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Security Attacks to the Name Management Protocol in Vehicular...

Sharika Kumar (The Ohio State University), Imtiaz Karim, Elisa Bertino (Purdue University), Anish Arora (Ohio State University)

Read More

A Comparison of Three Approaches to Assist Users in...

Michael Clark (Brigham Young University), Scott Ruoti (The University of Tennessee), Michael Mendoza (Imperial College London), Kent Seamons (Brigham Young University)

Read More