Michael Clark (Brigham Young University), Scott Ruoti (The University of Tennessee), Michael Mendoza (Imperial College London), Kent Seamons (Brigham Young University)

Users struggle to select strong passwords. System-assigned passwords address this problem, but they can be difficult for users to memorize. While password managers can help store system-assigned passwords, there will always be passwords that a user needs to memorize, such as their password manager’s master password. As such, there is a critical need for research into helping users memorize system-assigned passwords. In this work, we compare three different designs for password memorization aids inspired by the method of loci or memory palace. Design One displays a two-dimensional scene with objects placed inside it in arbitrary (and randomized) positions, with Design Two fixing the objects’ position within the scene, and Design Three displays the scene using a navigable, three-dimensional representation. In an A-B study of these designs, we find that, surprisingly, there is no statistically significant difference between the memorability of these three designs, nor that of assigning users a passphrase to memorize, which we used as the control in this study. However, we find that when perfect recall failed, our designs helped users remember a greater portion of the encoded system-assigned password than did a passphrase, a property we refer to as durability. Our results indicate that there could be room for memorization aids that incorporate fuzzy or error-correcting authentication. Similarly, our results suggest that simple (i.e., cheap to develop) designs of this nature may be just as effective as more complicated, high-fidelity (i.e., expensive to develop) designs.

View More Papers

“Lose Your Phone, Lose Your Identity”: Exploring Users’ Perceptions...

Michael Lutaaya, Hala Assal, Khadija Baig, Sana Maqsood, Sonia Chiasson (Carleton University)

Read More

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More

Scrappy: SeCure Rate Assuring Protocol with PrivacY

Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More