Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

In the last decade, a series of papers were published on using static analysis to detect cryptographic API misuse. In each paper, apps are checked against a set of rules to see if violations exist. A common theme among these papers is that rule violations are plentiful, often at the scale of thousands. Interestingly, while much effort went into tackling false negatives, curiously, not much has been said on (1) whether the misuse alarms are indeed correct and meaningful, and (2) what can future work improve upon apart from finding more misuses.

In this paper, we take a deep dive into the rule violations reported by various academic papers as well as the rules, models and implementations of their detectors, in an attempt to (1) explain the gap between their misuse alarms and actual vulnerabilities, and (2) shed light on possible directions for improving the precision and usability of misuse detectors. Results of our analysis suggest that the small-scale inspections done by previous work had some unfortunate blind-spots, leaving problems in their rules, models, and implementations unnoticed, which in turn led to unnecessary overestimation of misuses (and vulnerabilities). To facilitate future research on the topic, we distill these avoidable false alarms into high-level patterns that capture their root causes, and discuss design, evaluation and reporting strategies that can improve the precision of misuse findings. Furthermore, to demonstrate the generalizability of these false alarm patterns and improvement directions, we also investigate a popular industry detector and a dynamic detector, and discuss how some of the false alarm patterns do and do not apply to them. Our findings suggest that the problem of precisely reporting cryptographic misuses still has much room for future work to improve upon.

View More Papers

Predictive Context-sensitive Fuzzing

Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers...

Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

Read More

PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the...

Man Zhou (Huazhong University of Science and Technology), Shuao Su (Huazhong University of Science and Technology), Qian Wang (Wuhan University), Qi Li (Tsinghua University), Yuting Zhou (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Zhengxiong Li (University of Colorado Denver)

Read More

Beyond the Surface: Uncovering the Unprotected Components of Android...

Hao Zhou (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Chenxiong Qian (University of Hong Kong), Xiapu Luo (The Hong Kong Polytechnic University), Haipeng Cai (Washington State University), Chao Zhang (Tsinghua University)

Read More