Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Recent work in ICML’22 established a connection between dataset condensation (DC) and differential privacy (DP), which is unfortunately problematic. To correctly connect DC and DP, we propose two differentially private dataset condensation (DPDC) algorithms—LDPDC and NDPDC. LDPDC is a linear DC algorithm that can be executed on a low-end Central Processing Unit (CPU), while NDPDC is a nonlinear DC algorithm that leverages neural networks to extract and match the latent representations between real and synthetic data. Through extensive evaluations, we demonstrate that LDPDC has comparable performance to recent DP generative methods despite its simplicity. NDPDC provides acceptable DP guarantees with a mild utility loss, compared to distribution matching (DM). Additionally, NDPDC allows a flexible trade-off between the synthetic data utility and DP budget.

View More Papers

Bernoulli Honeywords

Ke Coby Wang (Duke University), Michael K. Reiter (Duke University)

Read More

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

Facilitating Non-Intrusive In-Vivo Firmware Testing with Stateless Instrumentation

Jiameng Shi (University of Georgia), Wenqiang Li (Independent Researcher), Wenwen Wang (University of Georgia), Le Guan (University of Georgia)

Read More

Understanding the Internet-Wide Vulnerability Landscape for ROS-based Robotic Vehicles...

Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Read More