Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Fuzzing evolved into the most popular technique to detect bugs in software. Its combination with sanitizers has shown tremendous efficacy in uncovering memory safety errors, such as buffer overflows, that haunt C and C++ programmers. However, an important class of such issues, the so-called use-of-uninitialized-memory (UUM) errors, struggles to gain similar benefits from fuzzing endeavors. The only fuzzer-compatible UUM sanitizer available to date, MSan, requires that all libraries are fully instrumented. Unlike address sanitization, for which partial instrumentation results in false negatives (missed detection of bugs), UUM sanitizers require complete instrumentation to avoid false positives, hampering testing at scale. Yet, full-stack compiler-based instrumentation can be a daunting prospect for compatibility and practicality. As a result, many programs are left untested for UUM bugs.

In this paper, we propose an efficient multi-layer, opportunistic design that does not require (source-based) recompilation of all code without harming accuracy. The multiplicity of executions when fuzzing offers us the opportunity to learn what any encountered false positive looks like, and later ignore them when we meet them again with new test cases. Such an avenue is feasible only if one can resort to fast techniques to effectively discriminate candidate errors, or false negatives will then occur.

We show how to realize this design by using the dynamic binary translation of QEMU for compatibility and lightweight code analysis techniques to achieve scalability and accuracy. As a result, we obtain a fuzzer-friendly, performant sanitizer, QMSan, that effectively tackles current practicality challenges of UUM error detection. On a collection of 10 open-source and 5 proprietary programs, QMSan exposed 44 new UUM bugs. In our tests, QMSan incurs slowdowns of 1.51x over QEMU and 1.55x over the compiler-based instrumentation of MSan, showing no false positives and false negatives. QMSan is open-source.

View More Papers

Deanonymizing Device Identities via Side-channel Attacks in Exclusive-use IoTs...

Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More

Distributed Function Secret Sharing and Applications

Pengzhi Xing (University of Electronic Science and Technology of China), Hongwei Li (University of Electronic Science and Technology of China), Meng Hao (Singapore Management University), Hanxiao Chen (University of Electronic Science and Technology of China), Jia Hu (University of Electronic Science and Technology of China), Dongxiao Liu (University of Electronic Science and Technology of China)

Read More