Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Web browsers are ubiquitous and execute untrusted JavaScript (JS) code. JS engines optimize frequently executed code through just-in-time (JIT) compilation. Subtly conflicting assumptions between optimizations frequently result in JS engine vulnerabilities. Attackers can take advantage of such diverging assumptions and use the flexibility of JS to craft exploits that produce a miscalculation, remove bounds checks in JIT compiled code, and ultimately gain arbitrary code execution. Classical fuzzing approaches for JS engines only detect bugs if the engine crashes or a runtime assertion fails. Differential fuzzing can compare interpreted code against optimized JIT compiled code to detect differences in execution. Recent approaches probe the execution states of JS programs through ad-hoc JS functions that read the value of variables at runtime. However, these approaches have limited capabilities to detect diverging executions and inhibit
optimizations during JIT compilation, thus leaving JS engines under-tested.

We propose DUMPLING, a differential fuzzer that compares the full state of optimized and unoptimized execution for arbitrary JS programs. Instead of instrumenting the JS input, DUMPLING instruments the JS engine itself, enabling deep and precise introspection. These extracted fine-grained execution states, coined as (frame) dumps, are extracted at a high frequency even in the middle of JIT compiled functions. DUMPLING finds eight new bugs in the thoroughly tested V8 engine, where previous differential fuzzing approaches struggled to discover new bugs. We receive $11,000 from Google’s Vulnerability Rewards Program for reporting the vulnerabilities found by DUMPLING.

View More Papers

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

AI-Assisted RF Fingerprinting for Identification of User Devices in...

Aishwarya Jawne (Center for Connected Autonomy & AI, Florida Atlantic University), Georgios Sklivanitis (Center for Connected Autonomy & AI, Florida Atlantic University), Dimitris A. Pados (Center for Connected Autonomy & AI, Florida Atlantic University), Elizabeth Serena Bentley (Air Force Research Laboratory)

Read More

ReThink: Reveal the Threat of Electromagnetic Interference on Power...

Fengchen Yang (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Zihao Dan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Kaikai Pan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Chen Yan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Xiaoyu Ji (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Wenyuan Xu (Zhejiang University; ZJU…

Read More

DiStefano: Decentralized Infrastructure for Sharing Trusted Encrypted Facts and...

Sofia Celi (Brave Software), Alex Davidson (NOVA LINCS & Universidade NOVA de Lisboa), Hamed Haddadi (Imperial College London & Brave Software), Gonçalo Pestana (Hashmatter), Joe Rowell (Information Security Group, Royal Holloway, University of London)

Read More