Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)

Generative AI has enabled the large-scale production of photorealistic synthetic sexual imagery, yet prior work on non-consensual intimate imagery and deepfakes has focused mostly on underground forums and dedicated nudification tools. In this paper, we investigate whether these services have moved into mainstream gig marketplaces, where they benefit from larger user bases and higher trust.

We present the first systematic study of sexually explicit AI generation services (often advertised as AI NSFW services) on a major freelance marketplace, Fiverr. We discover these listings by employing a range of sampling approaches, including keyword searches, sitemap analysis, and snowball sampling, and confirm that they are sexually explicit through an LLM classifier. Through this process we identify 593 AI-enabled NSFW gigs. We also collect a set of control groups from other AI and non-AI categories (n=1,028). We use an LLM to extract each gig’s risk indicators, advertised tools, platform targets, pricing, and seller attributes.

Our results reveal a rapidly emerging market with new NSFW service freelancers joining at consistently higher rates than any other group we observed (74.9% of NSFW sellers joined in 2025). Within the NSFW segment, 82.8% expose deepfake-enabling features and 87.6% violate Fiverr’s policies on pornography and deepfakes. We also uncover a new type of service, not previously documented: custom sexually explicit LoRA/model training. Sellers disproportionately target downstream platforms such as OnlyFans (54.2%), Instagram (29.5%), and Fanvue (24.1%). For the usable security and privacy community, our results reframe abuse-enabling generative AI as a mainstream problem rather than a dark corner of the Internet.

View More Papers

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More

“Security issues should be addressed immediately regardless of who...

Tamara Bondar (Carleton University), Hala Assal (Carleton University)

Read More

“I’m 73, you can’t expect me to have multiple...

Ashley Sheil (Munster Technological University), Jacob Camilleri (Munster Technological University), Michelle O Keeffe (Munster Technological University), Melanie Gruben (Munster Technological University), Moya Cronin (Munster Technological University) and Hazel Murray (Munster Technological University)

Read More