Chen Chen (Texas A&M University), Zaiyan Xu (Texas A&M University), Mohamadreza Rostami (Technical University of Darmstadt), David Liu (Texas A & M University), Dileep Kalathil (TAMU), Ahmad-Reza Sadeghi (TU Darmstadt), Jeyavijayan Rajendran (TAMU)

Processor designs rely on iterative modifications and reuse well-established designs. However, this reuse of prior designs also leads to similar vulnerabilities across multiple processors. As processors grow increasingly complex with iterative modifications, efficiently detecting vulnerabilities from modern processors is critical. Inspired by software fuzzing, hardware fuzzing has recently demonstrated its effectiveness in detecting processor vulnerabilities. Yet, to our best knowledge, existing processor fuzzers fuzz each design individually, lacking the capability to understand known vulnerabilities in prior processors to fine-tune fuzzing to identify similar or new variants of vulnerabilities.

To address this gap, we present *ReFuzz*, an adaptive fuzzing framework that leverages contextual bandit to reuse highly effective tests from prior processors to fuzz a processor-under-test (PUT) within a given ISA. By intelligently mutating tests that trigger vulnerabilities in prior processors, ReFuzz detects similar and new variants of vulnerabilities in PUTs. *ReFuzz* uncovered three new security vulnerabilities and two new functional bugs. *ReFuzz* detected one vulnerability by reusing a test that triggers a known vulnerability in a prior processor. One functional bug exists across three processors that share design modules. The second bug has two variants. Additionally, *ReFuzz* reuses highly effective tests to enhance efficiency in coverage, achieving an average $511.23times{}$ coverage speedup and up to $9.33%$ more total coverage, compared to existing fuzzers.

View More Papers

Cascading and Proxy Membership Inference Attacks

Yuntao Du (Purdue University), Jiacheng Li (Purdue University), Yuetian Chen (Purdue University), Kaiyuan Zhang (Purdue University), Zhizhen Yuan (Purdue University), Hanshen Xiao (Purdue University), Bruno Ribeiro (Purdue University), Ninghui Li (Purdue University)

Read More

Prompt Injection Attack to Tool Selection in LLM Agents

Jiawen Shi (Huazhong University of Science and Technology), Zenghui Yuan (Huazhong University of Science and Technology), Guiyao Tie (Huazhong University of Science and Technology), Pan Zhou (Huazhong University of Science and Technology), Neil Gong (Duke University), Lichao Sun (Lehigh University)

Read More

PIRANHAS: PrIvacy-Preserving Remote Attestation in Non-Hierarchical Asynchronous Swarms

Jonas Hofmann (Technische Universität Darmstadt), Philipp-Florens Lehwalder (Technische Universität Darmstadt), Shahriar Ebrahimi (Alan Turing Institute), Parisa Hassanizadeh (IPPT PAN / University of Warwick), Sebastian Faust (Technische Universität Darmstadt)

Read More