Wenhao Wang (Yale University, IC3), Fangyan Shi (Tsinghua University), Dani Vilardell (Cornell Tech, IC3), Fan Zhang (Yale University, IC3)

Succinct Non-interactive Arguments of Knowledge (SNARKs) can enable efficient verification of computation in many applications. However, generating SNARK proofs for large-scale tasks, such as verifiable machine learning or virtual machines, remains computationally expensive. A promising approach is to distribute the proof generation workload across multiple workers. A practical distributed SNARK protocol should have three properties: horizontal scalability with low overhead (linear computation and logarithmic communication per worker), accountability (efficient detection of malicious workers), and a universal trusted setup independent of circuits and the number of workers. Existing protocols fail to achieve all these properties.

In this paper, we present Cirrus, the first distributed SNARK generation protocol achieving all three desirable properties at once. Our protocol builds on HyperPlonk (EUROCRYPT'23), inheriting its universal trusted setup. It achieves linear computation complexity for both workers and the coordinator, along with low communication overhead. To achieve accountability, we introduce a highly efficient accountability protocol to localize malicious workers. Additionally, we propose a hierarchical aggregation technique to further reduce the coordinator’s workload.

We implemented and evaluated Cirrus on machines with modest hardware. Our experiments show that Cirrus is highly scalable: it generates proofs for circuits with $33$M gates in under $40$ seconds using $32$ $8$-core machines. Compared to the state-of-the-art accountable protocol Hekaton (CCS'24), Cirrus achieves over $7times$ faster proof generation for PLONK-friendly circuits such as the Pedersen hash. Our accountability protocol also efficiently identifies faulty workers within just $4$ seconds, making Cirrus particularly suitable for decentralized and outsourced computation scenarios.

View More Papers

Achieving Interpretable DL-based Web Attack Detection through Malicious Payload...

Peiyang Li (Tsinghua University & Ant Group), Fukun Mei (Tsinghua University), Ye Wang (Tsinghua University), Zhuotao Liu (Tsinghua University), Ke Xu (Tsinghua University & Zhongguancun Laboratory), Chao Shen (Xi'an Jiaotong University), Qian Wang (Wuhan University), Qi Li (Tsinghua University & Zhongguancun Laboratory)

Read More

A Causal Perspective for Enhancing Jailbreak Attack and Defense

Licheng Pan (Zhejiang University), Yunsheng Lu (University of Chicago), Jiexi Liu (Alibaba Group), Jialing Tao (Alibaba Group), Haozhe Feng (Zhejiang University), Hui Xue (Alibaba Group), Zhixuan Chu (Zhejiang University), Kui Ren (Zhejiang University)

Read More

DualStrike: Accurate, Real-time Eavesdropping and Injection of Keystrokes on...

Xiaomeng Chen (Shanghai Jiao Tong University), Jike Wang (Shanghai Jiao Tong University), Zhenyu Chen (Shanghai Jiao Tong University), Qi Alfred Chen (University of California, Irvine), Xinbing Wang (Shanghai Jiao Tong University), Dongyao Chen (Shanghai Jiao Tong University)

Read More