Reachal Wang (Duke University), Yuqi Jia (Duke University), Neil Gong (Duke University)

Prompt injection attacks aim to contaminate the input data of an LLM to mislead it into completing an attacker-chosen task instead of the intended task. In many applications and agents, the input data originates from multiple sources, with each source contributing a segment of the overall input. In these multi-source scenarios, an attacker may control only a subset of the sources and contaminate the corresponding segments, but typically does not know the order in which the segments are arranged within the input. Existing prompt injection attacks either assume that the entire input data comes from a single source under the attacker's control or ignore the uncertainty in the ordering of segments from different sources. As a result, their success is limited in domains involving multi-source data.

In this work, we propose emph{ObliInjection}, the first prompt injection attack targeting LLM applications and agents with multi-source input data. ObliInjection introduces two key technical innovations: the emph{order-oblivious loss}, which quantifies the likelihood that the LLM will complete the attacker-chosen task regardless of how the clean and contaminated segments are ordered; and the emph{orderGCG algorithm}, which is tailored to minimize the order-oblivious loss and optimize the contaminated segments. Comprehensive experiments across three datasets spanning diverse application domains and twelve LLMs demonstrate that ObliInjection is highly effective, even when only one out of 6-100 segments in the input data is contaminated. Our code and data are available at: https://github.com/ReachalWang/ObliInjection.

View More Papers

From Noise to Signal: Precisely Identify Affected Packages of...

Yingyuan Pu (QI-ANXIN Technology Research Institute), Lingyun Ying (QI-ANXIN Technology Research Institute), Yacong Gu (Tsinghua University; Tsinghua University-QI-ANXIN Group JCNS)

Read More

Breaking the Bulkhead: Demystifying Cross-Namespace Reference Vulnerabilities in Kubernetes...

Andong Chen (Zhejiang University), Ziyi Guo (Northwestern University), Zhaoxuan Jin (Northwestern University), Zhenyuan Li (Zhejiang University), Yan Chen (Northwestern University)

Read More

Memory Backdoor Attacks on Neural Networks

Eden Luzon (Ben Gurion University of the Negev), Guy Amit (Ben-Gurion University & IBM Research), Roy Weiss (Ben Gurion University of the Negev), Torsten Krauß (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Yisroel Mirsky (Ben Gurion University of the Negev)

Read More