Fangzhou Dong (Arizona State University), Arvind S Raj (Arizona State University), Efrén López-Morales (New Mexico State University), Siyu Liu (Arizona State University), Yan Shoshitaishvili (Arizona State University), Tiffany Bao (Arizona State University), Adam Doupé (Arizona State University), Muslum Ozgur Ozmen (Arizona State University), Ruoyu Wang (Arizona State University)

Programmable Logic Controllers (PLCs) are industrial computers that control devices with real-world physical effects, and safety vulnerabilities in these systems can lead to catastrophic consequences. While prior research has proposed techniques to detect safety issues in PLC state machines, most approaches require access to design specifications or source code—resources often unavailable to analysts or end users.

This paper targets a prevalent class of vulnerabilities, which we name Blind-Trust Vulnerabilities, caused by missing or incomplete safety checks on peripheral inputs. We introduce Ta’veren, a novel static analysis-based framework that identifies such vulnerabilities directly from PLC binaries without relying on firmware rehosting, which remains an open research problem in firmware analysis. Ta’veren recovers the finite state machines of the PLC binaries, enabling repeated safety analyses under various policy specifications. To abstract the state from program states to logic-related states, we leverage our insight that PLCs consistently use specific variables to represent internal states, thus allowing for aggressive state deduplication. This insight enables us to effectively deduplicate states without compromising soundness. We develop a prototype of Ta’veren and evaluate it on real-world PLC binaries. Our experiments show that Ta’veren efficiently recovers meaningful FSMs and uncovers critical safety violations with high effectiveness.

View More Papers

Odysseus: Jailbreaking Commercial Multimodal LLM-integrated Systems via Dual Steganography

Songze Li (Southeast University), Jiameng Cheng (Southeast University), Yiming Li (Nanyang Technological University), Xiaojun Jia (Nanyang Technological University), Dacheng Tao (Nanyang Technological University)

Read More

Through the Authentication Maze: Detecting Authentication Bypass Vulnerabilities in...

Nanyu Zhong (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Key Laboratory of Network Assessment Technology, Chinese Academy of Sciences; Beijing Key Laboratory of Network Security and Protection Technology), Yuekang Li (University of New South Wales), Yanyan Zou (Institute of Information Engineering, Chinese Academy of…

Read More

TIPSO-GAN: Malicious Network Traffic Detection Using a Novel Optimized...

Ernest Akpaku (School of Computer Science and Communication Engineering, Jiangsu University), Jinfu Chen (School of Computer Science and Communication Engineering, Jiangsu University), Joshua Ofoeda (University of Professional Studies, Accra)

Read More