Jianfeng Li (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Hao Zhou (The Hong Kong Polytechnic University), Xiapu Luo (The Hong Kong Polytechnic University), Ting Wang (Penn State), Yangyang Liu (The Hong Kong Polytechnic University), Xiaobo Ma (Xi'an Jiaotong University)

Mobile apps have profoundly reshaped modern lifestyles in different aspects. Several concerns are naturally raised about the privacy risk of mobile apps. Despite the prevalence of encrypted communication, app fingerprinting (AF) attacks still pose a serious threat to users’ online privacy. However, existing AF attacks are usually hampered by four challenging issues, namely i) hidden destination, ii) invisible boundary, iii) app multiplexing, and iv) open-world recognition, when they are applied to wireless traffic. None of existing AF attacks can address all these challenges. In this paper, we advance a novel AF attack, dubbed PACKETPRINT, to recognize user activities associated with the app of interest from encrypted wireless traffic and tackle the above challenges by proposing two novel models, i.e., sequential XGBoost and hierarchical bag-of- words model. We conduct extensive experiments to evaluate the proposed attack in a series of challenging scenarios, including i) open-world setting, ii) packet loss and network congestion, iii) simultaneous use of different apps, and iv) cross-dataset recognition. The experimental results show that PACKETPRINT can accurately recognize user activities associated with the apps of interest. It achieves the average F1-score 0.884 for open-world app recognition and the average F1-score 0.959 for in-app user action recognition.

View More Papers

Hazard Integrated: Understanding Security Risks in App Extensions to...

Mingming Zha (Indiana University Bloomington), Jice Wang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences), Yuhong Nan (Sun Yat-sen University), Xiaofeng Wang (Indiana Unversity Bloomington), Yuqing Zhang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences), Zelin Yang (National Computer Network Intrusion Protection Center, University of Chinese Academy…

Read More

FakeGuard: Exploring Haptic Response to Mitigate the Vulnerability in...

Aditya Singh Rathore (University at Buffalo, SUNY), Yijie Shen (Zhejiang University), Chenhan Xu (University at Buffalo, SUNY), Jacob Snyderman (University at Buffalo, SUNY), Jinsong Han (Zhejiang University), Fan Zhang (Zhejiang University), Zhengxiong Li (University of Colorado Denver), Feng Lin (Zhejiang University), Wenyao Xu (University at Buffalo, SUNY), Kui Ren (Zhejiang University)

Read More

ProvTalk: Towards Interpretable Multi-level Provenance Analysis in Networking Functions...

Azadeh Tabiban (CIISE, Concordia University, Montreal, QC, Canada), Heyang Zhao (CIISE, Concordia University, Montreal, QC, Canada), Yosr Jarraya (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Makan Pourzandi (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Mengyuan Zhang (Department of Computing, The Hong Kong Polytechnic University, China), Lingyu Wang (CIISE, Concordia University, Montreal, QC, Canada)

Read More

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More