Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Inter-satellite links will unlock true global access to high-speed internet delivered by Low Earth Orbit (LEO) mega-constellations. Functional packet routing within the constraints of the space environment, spacecraft design, and continual satellite mobility is uniquely challenging and requires novel routing algorithm approaches. Additionally, recent real-world events have highlighted adversarial attempts to deny and disrupt mega-constellation networking capabilities. In this paper, we advance highly resilient LEO mega-constellation dynamic routing algorithms by presenting our novel, ISL architecture-derived, network coordinate system. This coordinate system simplifies the network topology and permits increasingly impactful routing decisions with minimal computational overhead. From our topology, we demonstrate a proof-of-concept, lightweight routing algorithm that is highly resilient and scalable. To promote standardized resilience comparisons for LEO mega-constellation routing algorithms, we also propose a routing resilience testing framework that defines key performance metrics, adversarial capabilities, and testing scenarios. Using our proposed framework, we demonstrate our routing algorithm’s increased resilience over several state-of-the-art dynamic routing algorithms, with 12% packet delivery rate improvement during high adversarial disruption intensities.

View More Papers

WIP: Modeling and Detecting Falsified Vehicle Trajectories Under Data...

Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Read More

Understanding Route Origin Validation (ROV) Deployment in the Real...

Lancheng Qin (Tsinghua University, BNRist), Li Chen (Zhongguancun Laboratory), Dan Li (Tsinghua University, Zhongguancun Laboratory), Honglin Ye (Tsinghua University), Yutian Wang (Tsinghua University)

Read More