Abbas Acar (Florida International University), Güliz Seray Tuncay (Google), Esteban Luques (Florida International University), Harun Oz (Florida International University), Ahmet Aris (Florida International University), Selcuk Uluagac (Florida International University)

Android is by far the most popular OS with over three billion active mobile devices. As in any software, uncovering vulnerabilities on Android devices and applying timely patches are both critical. Android Open Source Project has initiated efforts to improve the traceability of security updates through Security Patch Levels assigned to devices. While this initiative provided better traceability for the vulnerabilities, it has not entirely resolved the issues related to the timeliness and availability of security updates for end users. Recent studies on Android security updates have focused on the issue of delay during the security update roll-out, largely attributing this to factors related to fragmentation. However, these studies fail to capture the entire Android ecosystem as they primarily examine flagship devices or do not paint a comprehensive picture of the Android devices’ lifecycle due to the datasets spanning over a short timeframe. To address this gap in the literature, we utilize a device-centric approach to analyze the security update behavior of Android devices. Our approach aims to understand the security update distribution behavior of Original Equipment Manufacturers (OEM) by using a representative set of devices from each OEM and characterize the complete lifecycle of an average Android device. We obtained 367K official security update records from public sources, spanning from 2014 to 2023. Our dataset contains 599 unique devices from four major OEMs that are used in 97 countries and are associated with 109 carriers. We identify significant differences in the roll-out of security updates across different OEMs, device models and types, and geographical regions across the world. Our findings show that the reasons for the delay in the roll-out of security updates are not limited to fragmentation but also involve several OEM-specific factors such as the type of support the device receives (e.g., monthly, quarterly, biannual). Our analysis also uncovers certain key issues regarding the security update distribution that can be readily addressed as well as exemplary practices that can be immediately adopted by OEMs in practice.

View More Papers

Detecting Voice Cloning Attacks via Timbre Watermarking

Chang Liu (University of Science and Technology of China), Jie Zhang (Nanyang Technological University), Tianwei Zhang (Nanyang Technological University), Xi Yang (University of Science and Technology of China), Weiming Zhang (University of Science and Technology of China), NengHai Yu (University of Science and Technology of China)

Read More

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

LoRDMA: A New Low-Rate DoS Attack in RDMA Networks

Shicheng Wang (Tsinghua University), Menghao Zhang (Beihang University & Infrawaves), Yuying Du (Information Engineering University), Ziteng Chen (Southeast University), Zhiliang Wang (Tsinghua University & Zhongguancun Laboratory), Mingwei Xu (Tsinghua University & Zhongguancun Laboratory), Renjie Xie (Tsinghua University), Jiahai Yang (Tsinghua University & Zhongguancun Laboratory)

Read More

MirageFlow: A New Bandwidth Inflation Attack on Tor

Christoph Sendner (University of Würzburg), Jasper Stang (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Raveen Wijewickrama (University of Texas at San Antonio), Murtuza Jadliwala (University of Texas at San Antonio)

Read More