Haonan Feng (Beijing University of Posts and Telecommunications), Hui Li (Beijing University of Posts and Telecommunications), Xuesong Pan (Beijing University of Posts and Telecommunications), Ziming Zhao (University at Buffalo)

The FIDO protocol suite aims at allowing users to log in to remote services with a local and trusted authenticator. With FIDO, relying services do not need to store user-chosen secrets or their hashes, which eliminates a major attack surface for e-business. Given its increasing popularity, it is imperative to formally analyze whether the security promises of FIDO hold. In this paper, we present a comprehensive and formal verification of the FIDO UAF protocol by formalizing its security assumptions and goals and modeling the protocol under different scenarios in ProVerif. Our analysis identifies the minimal security assumptions required for each of the security goals of FIDO UAF to hold. We confirm previously manually discovered vulnerabilities in an automated way and disclose several new attacks. Guided by the formal verification results we also discovered 2 practical attacks on 2 popular Android FIDO apps, which we responsibly disclosed to the vendors. In addition, we offer several concrete recommendations to fix the identified problems and weaknesses in the protocol.

View More Papers

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui (The Johns Hopkins University), Yuchen Yang (The Johns Hopkins University), Haolin Yuan (The Johns Hopkins University), Philippe Burlina (The Johns Hopkins University Applied Physics Laboratory), Neil Zhenqiang Gong (Duke University), Yinzhi Cao (The Johns Hopkins University)

Read More

XDA: Accurate, Robust Disassembly with Transfer Learning

Kexin Pei (Columbia University), Jonas Guan (University of Toronto), David Williams-King (Columbia University), Junfeng Yang (Columbia University), Suman Jana (Columbia University)

Read More

Exploring The Design Space of Sharing and Privacy Mechanisms...

Abdulmajeed Alqhatani, Heather R. Lipford (University of North Carolina at Charlotte)

Read More