Haonan Feng (Beijing University of Posts and Telecommunications), Hui Li (Beijing University of Posts and Telecommunications), Xuesong Pan (Beijing University of Posts and Telecommunications), Ziming Zhao (University at Buffalo)

The FIDO protocol suite aims at allowing users to log in to remote services with a local and trusted authenticator. With FIDO, relying services do not need to store user-chosen secrets or their hashes, which eliminates a major attack surface for e-business. Given its increasing popularity, it is imperative to formally analyze whether the security promises of FIDO hold. In this paper, we present a comprehensive and formal verification of the FIDO UAF protocol by formalizing its security assumptions and goals and modeling the protocol under different scenarios in ProVerif. Our analysis identifies the minimal security assumptions required for each of the security goals of FIDO UAF to hold. We confirm previously manually discovered vulnerabilities in an automated way and disclose several new attacks. Guided by the formal verification results we also discovered 2 practical attacks on 2 popular Android FIDO apps, which we responsibly disclosed to the vendors. In addition, we offer several concrete recommendations to fix the identified problems and weaknesses in the protocol.

View More Papers

Demo #8: Security of Camera-based Perception for Autonomous Driving...

Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Read More

To Err.Is Human: Characterizing the Threat of Unintended URLs...

Beliz Kaleli (Boston University), Brian Kondracki (Stony Brook University), Manuel Egele (Boston University), Nick Nikiforakis (Stony Brook University), Gianluca Stringhini (Boston University)

Read More

TASE: Reducing Latency of Symbolic Execution with Transactional Memory

Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

Read More

SerialDetector: Principled and Practical Exploration of Object Injection Vulnerabilities...

Mikhail Shcherbakov (KTH Royal Institute of Technology), Musard Balliu (KTH Royal Institute of Technology)

Read More