Stijn Pletinckx (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Reverse proxy servers play a critical role in optimizing Internet services, offering benefits ranging from load balancing to Denial of Service (DoS) protection. A known shortcoming of such proxies is that the backend server becomes oblivious to the IP address of the client who initiated the connection since all requests are forwarded by the proxy server. For HTTP, this issue is trivially solved by the X-Forwarded-For header, which allows the proxy server to pass to the backend server the IP address of the client that originated the request. Unfortunately, no such equivalent exists for many other protocols. To solve this issue, HAProxy created the PROXY protocol, which communicates client information from a proxy server to a backend server at a lower level in the network stack (Layer 4), making it protocol-agnostic.
In this work, we are the first to study the use of the PROXY protocol at Internet scale and investigate the security impact of its misconfigurations. We launched a measurement study on the full IPv4 address range and found that, over HTTP, more than 170,000 hosts accept PROXY protocol data from arbitrary sources. We demonstrate how to abuse this protocol to bypass on-path proxies (and their protections) and leak sensitive information from backend infrastructures. We discovered over 10,000 servers that are vulnerable to an access bypass, triggered by injecting a (spoofed) PROXY protocol header. Using this technique, we obtained access to over 500 internal servers providing control over IoT monitoring platforms and smart home automation devices, allowing us to, for example, regulate remote controlled window blinds or control security cameras and alarm systems. Beyond HTTP, we demonstrate how the PROXY protocol can be used to turn over 350 SMTP servers into open relays, enabling an attacker to send arbitrary emails from any email address. In sum, our study exposes how PROXY protocol misconfigurations lead to severe security issues that affect multiple protocols prominently used in the wild.

View More Papers

Heimdall: Towards Risk-Aware Network Management Outsourcing

Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

Read More

Secret Spilling Drive: Leaking User Behavior through SSD Contention

Jonas Juffinger (Graz University of Technology), Fabian Rauscher (Graz University of Technology), Giuseppe La Manna (Amazon), Daniel Gruss (Graz University of Technology)

Read More

IoT Software Updates: User Perspectives in the Context of...

S. P. Veed, S. M. Daftary, B. Singh, M. Rudra, S. Berhe (University of the Pacific), M. Maynard (Data Independence LLC) F. Khomh (Polytechnique Montreal)

Read More

CLIBE: Detecting Dynamic Backdoors in Transformer-based NLP Models

Rui Zeng (Zhejiang University), Xi Chen (Zhejiang University), Yuwen Pu (Zhejiang University), Xuhong Zhang (Zhejiang University), Tianyu Du (Zhejiang University), Shouling Ji (Zhejiang University)

Read More