Kai Li (Syracuse University), Jiaqi Chen (Syracuse University), Xianghong Liu (Syracuse University), Yuzhe Tang (Syracuse University), XiaoFeng Wang (Indiana University Bloomington), Xiapu Luo (Hong Kong Polytechnic University)

Modern blockchains have evolved from cryptocurrency substrates to trust-decentralization platforms, supporting a wider variety of decentralized applications known as DApps. Blockchain remote procedure call (RPC) services emerge as an intermediary connecting the DApps to a blockchain network. In this work, we identify the free contract-execution capabilities that widely exist in blockchain RPCs as a vulnerability of denial of service (DoS) and present the DoERS attack, a Denial of Ethereum RPC service that incurs zero Ether cost to the attacker.

To understand the DoERS exploitability in the wild, we conduct a systematic measurement study on nine real-world RPC services which control most DApp clients' connection to the Ethereum mainnet. In particular, we propose a novel measurement technique based on orphan transactions to discover the previously unknown behaviors inside the blackbox RPC services, including load balancing and gas limiting. Further DoERS strategies are proposed to evade the protection intended by these behaviors.

We evaluate the effectiveness of DoERS attacks on deployed RPC services with minimal service interruption. The result shows that all the nine services tested (as of Apr. 2020) are vulnerable to DoERS attacks that can result in the service latency increased by $2.1Xsim{}50X$. Some of these attacks require only a single request. In addition, on a local Ethereum node protected by a very restrictive limit of $0.65$ block gas, sending 150 DoERS requests per second can slow down the block synchronization of the victim node by $91%$.

We propose mitigation techniques against DoERS without dropping service usability, via unpredictable load balancing, performance anomaly detection, and others. These techniques can be integrated into a RPC service transparently to its clients.

View More Papers

C^2SR: Cybercrime Scene Reconstruction for Post-mortem Forensic Analysis

Yonghwi Kwon (University of Virginia), Weihang Wang (University at Buffalo, SUNY), Jinho Jung (Georgia Institute of Technology), Kyu Hyung Lee (University of Georgia), Roberto Perdisci (Georgia Institute of Technology and University of Georgia)

Read More

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More

Demo #3: Detecting Illicit Drone Video Filming Using Cryptanalysis

Ben Nassi, Raz Ben-Netanel (Ben-Gurion University of the Negev), Adi Shamir (Weizmann Institute of Science), and Yuval Elovic (Ben-Gurion University of the Negev)

Read More

QPEP: An Actionable Approach to Secure and Performant Broadband...

James Pavur (Oxford University), Martin Strohmeier (armasuisse), Vincent Lenders (armasuisse), Ivan Martinovic (Oxford University)

Read More