Clement Fung (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Industrial Control Systems (ICS) govern critical infrastructure like power plants and water treatment plants. ICS can be attacked through manipulations of its sensor or actuator values, causing physical harm. A promising technique for detecting such attacks is machine-learning-based anomaly detection, but it does not identify which sensor or actuator was manipulated and makes it difficult for ICS operators to diagnose the anomaly's root cause. Prior work has proposed using attribution methods to identify what features caused an ICS anomaly-detection model to raise an alarm, but it is unclear how well these attribution methods work in practice. In this paper, we compare state-of-the-art attribution methods for the ICS domain with real attacks from multiple datasets. We find that attribution methods for ICS anomaly detection do not perform as well as suggested in prior work and identify two main reasons. First, anomaly detectors often detect attacks either immediately or significantly after the attack start; we find that attributions computed at these detection points are inaccurate. Second, attribution accuracy varies greatly across attack properties, and attribution methods struggle with attacks on categorical-valued actuators. Despite these challenges, we find that ensembles of attributions can compensate for weaknesses in individual attribution methods. Towards practical use of attributions for ICS anomaly detection, we provide recommendations for researchers and practitioners, such as the need to evaluate attributions with diverse datasets and the potential for attributions in non-real-time workflows.

View More Papers

SOCs lead AI adoption: Transitioning Lessons to the C-Suite

Eric Dull, Drew Walsh, Scott Riede (Deloitte and Touche)

Read More

Don't Interrupt Me – A Large-Scale Study of On-Device...

Marian Harbach (Google), Igor Bilogrevic (Google), Enrico Bacis (Google), Serena Chen (Google), Ravjit Uppal (Google), Andy Paicu (Google), Elias Klim (Google), Meggyn Watkins (Google), Balazs Engedy (Google)

Read More

Exploring the Influence of Prompts in LLMs for Security-Related...

Weiheng Bai (University of Minnesota), Qiushi Wu (IBM Research), Kefu Wu, Kangjie Lu (University of Minnesota)

Read More

Not your Type! Detecting Storage Collision Vulnerabilities in Ethereum...

Nicola Ruaro (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Robert McLaughlin (University of California, Santa Barbara), Ilya Grishchenko (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Read More