Liang Wang, Hyojoon Kim, Prateek Mittal, Jennifer Rexford (Princeton University)

In conventional DNS, or Do53, requests and responses are sent in cleartext. Thus, DNS recursive resolvers or any on-path adversaries can access privacy-sensitive information. To address this issue, several encryption-based approaches (e.g., DNS-over-HTTPS) and proxy-based approaches (e.g., Oblivious DNS) were proposed. However, encryption-based approaches put too much trust in recursive resolvers. Proxy-based approaches can help hide the client’s identity, but sets a higher deployment barrier while also introducing noticeable performance overhead. We propose PINOT, a packet-header obfuscation system that runs entirely in the data plane of a programmable network switch, which provides a lightweight, low-deployment-barrier anonymization service for clients sending and receiving DNS packets. PINOT does not require any modification to the DNS protocol or additional client software installation or proxy setup. Yet, it can also be combined with existing approaches to provide stronger privacy guarantees. We implement a PINOT prototype on a commodity switch, deploy it in a campus network, and present results on protecting user identity against public DNS services.

View More Papers

SquirRL: Automating Attack Analysis on Blockchain Incentive Mechanisms with...

Charlie Hou (CMU, IC3), Mingxun Zhou (Peking University), Yan Ji (Cornell Tech, IC3), Phil Daian (Cornell Tech, IC3), Florian Tramèr (Stanford University), Giulia Fanti (CMU, IC3), Ari Juels (Cornell Tech, IC3)

Read More

Demo #10: Security of Deep Learning based Automated Lane...

Takami Sato, Junjie Shen, Ningfei Wang (UC Irvine), Yunhan Jia (ByteDance), Xue Lin (Northeastern University), and Qi Alfred Chen (UC Irvine)

Read More

Zoom on the Keystrokes: Exploiting Video Calls for Keystroke...

Mohd Sabra (University of Texas at San Antonio), Anindya Maiti (University of Oklahoma), Murtuza Jadliwala (University of Texas at San Antonio)

Read More

KUBO: Precise and Scalable Detection of User-triggerable Undefined Behavior...

Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Read More