Hua Wu (School of Cyber Science & Engineering and Key Laboratory of Computer Network and Information Integration Southeast University, Ministry of Education, Jiangsu Nanjing, Purple Mountain Laboratories for Network and Communication Security (Nanjing, Jiangsu)), Shuyi Guo, Guang Cheng, Xiaoyan Hu (School of Cyber Science & Engineering and Key Laboratory of Computer Network and Information Integration Southeast University, Ministry of Education, Jiangsu Nanjing)

Due to the concealment of the dark web, many criminal activities choose to be conducted on it. The use of Tor bridges further obfuscates the traffic and enhances the concealment. Current researches on Tor bridge detection have used a small amount of complete traffic, which makes their methods not very practical in the backbone network. In this paper, we proposed a method for the detection of obfs4 bridge in backbone networks. To solve current limitations, we sample traffic to reduce the amount of data and put forward the Nested Count Bloom Filter structure to process the sampled network traffic. Besides, we extract features that can be used for bridge detection after traffic sampling. The experiment uses real backbone network traffic mixed with Tor traffic for verification. The experimental result shows that when Tor traffic accounts for only 0.15% and the sampling ratio is 64:1, the F1 score of the detection result is maintained at about 0.9.

View More Papers

SpecTaint: Speculative Taint Analysis for Discovering Spectre Gadgets

Zhenxiao Qi (UC Riverside), Qian Feng (Baidu USA), Yueqiang Cheng (NIO Security Research), Mengjia Yan (MIT), Peng Li (ByteDance), Heng Yin (UC Riverside), Tao Wei (Ant Group)

Read More

Raising Trust in the Food Supply Chain

Alexander Krumpholz, Marthie Grobler, Raj Gaire, Claire Mason, Shanae Burns (CSIRO Data61)

Read More

Towards Measuring Supply Chain Attacks on Package Managers for...

Ruian Duan (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Ranjita Pai Kasturi (Georgia Institute of Technology), Ryan Elder (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More