Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Generating randomness by public participation allows participants to contribute randomness directly and verify the result's security. Ideally, the difficulty of participating in such activities should be as low as possible to reduce the computational burden of being a contributor. However, existing randomness generation protocols are unsuitable for this scenario because of scalability or usability issues. Hence, in this paper we present HeadStart, a participatory randomness protocol designed for public participation at scale. HeadStart allows contributors to verify the result on commodity devices efficiently, and provides a parameter $L$ that can make the result-publication latency $L$ times lower. Additionally, we propose two implementation improvements to speed up the verification further and reduce the proof size. The verification complexity of HeadStart is only $O(L times polylog(T) +log C)$ for a contribution phase lasting for time $T$ with $C$ contributions.

View More Papers

Towards a TEE-based V2V Protocol for Connected and Autonomous...

Mohit Kumar Jangid (Ohio State University) and Zhiqiang Lin (Ohio State University)

Read More

Demo #4: Recovering Autonomous Robotic Vehicles from Physical Attacks

Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Read More

PoF: Proof-of-Following for Vehicle Platoons

Ziqi Xu (University of Arizona), Jingcheng Li (University of Arizona), Yanjun Pan (University of Arizona), Loukas Lazos (University of Arizona, Tucson), Ming Li (University of Arizona, Tucson), Nirnimesh Ghose (University of Nebraska–Lincoln)

Read More

Probe the Proto: Measuring Client-Side Prototype Pollution Vulnerabilities of...

Zifeng Kang (Johns Hopkins University), Song Li (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University)

Read More