Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Generating randomness by public participation allows participants to contribute randomness directly and verify the result's security. Ideally, the difficulty of participating in such activities should be as low as possible to reduce the computational burden of being a contributor. However, existing randomness generation protocols are unsuitable for this scenario because of scalability or usability issues. Hence, in this paper we present HeadStart, a participatory randomness protocol designed for public participation at scale. HeadStart allows contributors to verify the result on commodity devices efficiently, and provides a parameter $L$ that can make the result-publication latency $L$ times lower. Additionally, we propose two implementation improvements to speed up the verification further and reduce the proof size. The verification complexity of HeadStart is only $O(L times polylog(T) +log C)$ for a contribution phase lasting for time $T$ with $C$ contributions.

View More Papers

Fuzzing: A Tale of Two Cultures

Andreas Zeller (CISPA Helmholtz Center for Information Security)

Read More

Generating 3D Adversarial Point Clouds under the Principle of...

Bo Yang (Zhejiang University), Yushi Cheng (Tsinghua University), Zizhi Jin (Zhejiang University), Xiaoyu Ji (Zhejiang University) and Wenyuan Xu (Zhejiang University)

Read More

Demo #11: Understanding the Effects of Paint Colors on...

Shaik Sabiha (University at Buffalo), Keyan Guo (University at Buffalo), Foad Hajiaghajani (University at Buffalo), Chunming Qiao (University at Buffalo), Hongxin Hu (University at Buffalo) and Ziming Zhao (University at Buffalo)

Read More

Generation of CAN-based Wheel Lockup Attacks on the Dynamics...

Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Read More