Harshad Sathaye (Northeastern University), Gerald LaMountain (Northeastern University), Pau Closas (Northeastern University), Aanjhan Ranganathan (Northeastern University)

It is well-known that GPS is vulnerable to signal spoofing attacks. Although several spoofing detection techniques exist, they are incapable of mitigation and recovery from stealthy attackers. In this work, we present SemperFi, a single antenna GPS receiver capable of tracking legitimate GPS satellite signals and estimating the true location even against strong adversaries. Our design leverages a combination of the Extended Kalman Filter based GPS failsafe mechanism built into majority of UAVs and a custom designed legitimate signal retriever module to detect and autonomously recover from majority of spoofing attacks. We develop algorithms to carefully synthesize recovery signals and extend the successive interference cancellation technique to preserve the legitimate signal’s ToA, while eliminating the attacker’s signal. For strong adversaries capable of stealthy and seamless takeover, SemperFi uses brief maneuvers designed to exploit the short-term stability of inertial sensors and identify stealthy spoofing attacks. We implement SemperFi in GNSS-SDR, an open-source software-defined GNSS receiver, and evaluate its performance using UAV simulators, real drones, a variety of real-world GPS datasets, as well as on various embedded platforms. Our evaluation results indicate that in many scenarios, SemperFi can identify adversarial peaks by executing flight patterns less than 100 m long and recover the true location within 0.54 s (Jetson Xavier). We show that our receiver is secure against both naive and stealthy spoofers who exploit inertial sensor errors and execute seamless takeover attacks. Furthermore, we design SemperFi as a pluggable module capable of generating a spoofer-free GPS signal for processing on any commercial-off-the-shelf GPS receiver available today. Finally, we release our implementation to the community for usage and further research.

View More Papers

FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware

Grant Hernandez (University of Florida), Marius Muench (Vrije Universiteit Amsterdam), Dominik Maier (TU Berlin), Alyssa Milburn (Vrije Universiteit Amsterdam), Shinjo Park (TU Berlin), Tobias Scharnowski (Ruhr-University Bochum), Tyler Tucker (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Read More

Chosen-Instruction Attack Against Commercial Code Virtualization Obfuscators

Shijia Li (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Chunfu Jia (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Pengda Qiu (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data…

Read More

COOPER: Testing the Binding Code of Scripting Languages with...

Peng Xu (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Yanhao Wang (QI-ANXIN Technology Research Institute), Hong Hu (Pennsylvania State University), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences)

Read More