Thomas Yurek (University of Illinois at Urbana-Champaign), Licheng Luo (University of Illinois at Urbana-Champaign), Jaiden Fairoze (University of California, Berkeley), Aniket Kate (Purdue University), Andrew Miller (University of Illinois at Urbana-Champaign)

Despite significant recent progress toward making multi-party computation (MPC) practical, no existing MPC library offers complete robustness---meaning guaranteed output delivery, including in the offline phase---in a network that even has intermittent delays. Importantly, several theoretical MPC constructions already ensure robustness in this setting. We observe that the key reason for this gap between theory and practice is the absence of efficient verifiable/complete secret sharing (VSS/CSS) constructions; existing CSS protocols either require a) challenging broadcast channels in practice or b) introducing computation and communication overhead that is at least quadratic in the number of players.

This work presents hbACSS, a suite of optimal-resilience asynchronous complete secret sharing protocols that are (quasi)linear in both computation and communication overhead. Towards developing hbACSS, we develop hbPolyCommit, an efficient polynomial commitment scheme that is (quasi)linear (in the polynomial degree) in terms of computation and communication overhead without requiring a trusted setup. We implement our hbACSS protocols, extensively analyze their practicality, and observe that our protocols scale well with an increasing number of parties. In particular, we use hbACSS to generate MPC input masks: a useful primitive which had previously only been calculated nonrobustly in practice.

View More Papers

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More

Interpretable Federated Transformer Log Learning for Cloud Threat Forensics

Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For…

Read More

A Framework for Consistent and Repeatable Controller Area Network...

Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at Arlington), Gedare Bloom (University of Colorado Colorado Springs) and Habeeb Olufowobi (University of Texas at Arlington)

Read More

“Mind your own cryptocurrency!”

Abbas Acar, Ege Tekiner, Selcuk Uluagac (Florida International University)

Read More