James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University), Kyler Gates (Brigham Young University), Stephen Lambert (Brigham Young University), Christopher McClain (Brigham Young University), Parker Nichols (Brigham Young University), Daniel Zappala (Brigham Young University)

Passwords have numerous drawbacks, and as a result many systems have been designed to replace them. Password replacements have generally failed to dislodge passwords due to the complexity of balancing usability, deployability, and security. However, despite this lack of success, recent advances with password managers and FIDO2 afford new opportunities to explore system design for password replacements. In this work, we explore the feasibility of a system for user authentication based on certificates. Rather than developing new cryptography, we develop a new *system*, called Let's Authenticate, which combines elements of password managers, FIDO2, and certificates. Our design incorporates feedback from a survey of 397 participants to understand their preferences for system features. Let’s Authenticate issues privacy-preserving certificates to users, automatically manages their credentials, and eliminates trust in third parties. We provide a detailed security and privacy analysis, an overhead analysis, and a systematic comparison of the system to a variety of alternatives using a well-known framework. We discuss how Let’s Authenticate compares to other systems, lessons learned from our design, and issues related to centralized management of authentication data.

View More Papers

GPSKey: GPS based Secret Key Establishment for Intra-Vehicle Environment

Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

Read More

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More

Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice

Bingyong Guo (Institute of Software, Chinese Academy of Sciences), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhenliang Lu (The University of Sydney), Qiang Tang (The University of Sydney), jing xu (Institute of Software, Chinese Academy of Sciences), Zhenfeng Zhang (Institute of Software, Chinese Academy of Sciences)

Read More