Samuel Mergendahl (MIT Lincoln Laboratory), Nathan Burow (MIT Lincoln Laboratory), Hamed Okhravi (MIT Lincoln Laboratory)

Memory corruption attacks against unsafe programming languages like C/C++ have been a major threat to computer systems for multiple decades. Various sanitizers and runtime exploit mitigation techniques have been shown to only provide partial protection at best. Recently developed ‘safe’ programming languages such as Rust and Go hold the promise to change this paradigm by preventing memory corruption bugs using a strong type system and proper compile-time and runtime checks. Gradual deployment of these languages has been touted as a way of improving the security of existing applications before entire applications can be developed in safe languages. This is notable in popular applications such as Firefox and Tor. In this paper, we systematically analyze the security of multi-language applications. We show that because language safety checks in safe languages and exploit mitigation techniques applied to unsafe languages (e.g., Control-Flow Integrity) break different stages of an exploit to prevent control hijacking attacks, an attacker can carefully maneuver between the languages to mount a successful attack. In essence, we illustrate that the incompatible set of assumptions made in various languages enables attacks that are not possible in each language alone. We study different variants of these attacks and analyze Firefox to illustrate the feasibility and extent of this problem. Our findings show that gradual deployment of safe programming languages, if not done with extreme care, can indeed be detrimental to security.

View More Papers

PASS: A System-Driven Evaluation Platform for Autonomous Driving Safety...

Zhisheng Hu (Baidu Security), Junjie Shen (UC Irvine), Shengjian Guo (Baidu Security), Xinyang Zhang (Baidu Security), Zhenyu Zhong (Baidu Security), Qi Alfred Chen (UC Irvine) and Kang Li (Baidu Security)

Read More

Chosen-Instruction Attack Against Commercial Code Virtualization Obfuscators

Shijia Li (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Chunfu Jia (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Pengda Qiu (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data…

Read More

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

A Lightweight IoT Cryptojacking Detection Mechanism in Heterogeneous Smart...

Ege Tekiner (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

Read More