Walid J. Ghandour, Clémentine Maurice (CNRS, CRIStAL)

Dynamic dependence analysis monitors information flow between instructions in a program at runtime. Strength-based dynamic dependence analysis quantifies the strength of each dependence chain by a measure computed based on the values induced at the source and target of the chain. To the best of our knowledge, there is currently no tool available that implements strength-based dynamic information flow analysis for x86.

This paper presents DITTANY, tool support for strength-based dynamic dependence analysis and experimental evidence of its effectiveness on the x86 platform. It involves two main components: 1) a Pin-based profiler that identifies dynamic dependences in a binary executable and records the associated values induced at their sources and targets, and 2) an analysis tool that computes the strengths of the identified dependences using information theoretic and statistical metrics applied on their associated values. We also study the relation between dynamic dependences and measurable information flow, and the usage of zero strength flows to enhance performance.

DITTANY is a building block that can be used in different contexts. We show its usage in data value and indirect branch predictions. Future work will use it in countermeasures against transient execution attacks and in the context of approximate computing.

View More Papers

cozy: Comparative Symbolic Execution for Binary Programs

Caleb Helbling, Graham Leach-Krouse, Sam Lasser, Greg Sullivan (Draper)

Read More

Reflections on Artifact Evaluation

Dr. Eric Eide (University of Utah)

Read More

o-glassesX: Compiler Provenance Recovery with Attention Mechanism from a...

Yuhei Otsubo (National Police Agency, Tokyo, Japan), Akira Otsuka (Institute of information Security, Japan), Mamoru Mimura (National Defense Academy, Japan), Takeshi Sakaki (The University of Tokyo, Japan), Hiroshi Ukegawa (National Police Agency, Tokyo, Japan)

Read More

SURGEON: Performant, Flexible and Accurate Re-Hosting via Transplantation

Florian Hofhammer (EPFL), Marcel Busch (EPFL), Qinying Wang (EPFL and Zhejiang University), Manuel Egele (Boston University), Mathias Payer (EPFL)

Read More