Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

The complexity and functionality of malware is ever-increasing. Obfuscation is used to hide the malicious intent from virus scanners and increase the time it takes to reverse engineer the binary. One way to minimize this effort is function clone detection. Detecting whether a function is already known, or similar to an existing function, can reduce analysis effort. Outside of malware, the same function clone detection mechanism can be used to find vulnerable versions of functions in binaries, making it a powerful technique.

This work introduces a slim approach for the identification of obfuscated function clones, called OFCI, building on recent advances in machine learning based function clone detection. To tackle the issue of obfuscation, OFCI analyzes the effect of known function calls on function similarity. Furthermore, we investigate function similarity classification on code obfuscated through virtualization by applying function clone detection on execution traces. While not working adequately, it nevertheless provides insight into potential future directions.

Using the ALBERT transformer OFCI can achieve an 83% model size reduction in comparison to state-of-the-art approaches, while only causing an average 7% decrease in the ROC-AUC scores of function pair similarity classification. However, the reduction in model size comes at the cost of precision for function clone search. We discuss the reasons for this as well as other pitfalls of building function similarity detection tooling.

View More Papers

Ghidra: Is Newer Always Better?

Jonathan Crussell (Sandia National Laboratories)

Read More

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More

A Lightweight IoT Cryptojacking Detection Mechanism in Heterogeneous Smart...

Ege Tekiner (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More