Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

The complexity and functionality of malware is ever-increasing. Obfuscation is used to hide the malicious intent from virus scanners and increase the time it takes to reverse engineer the binary. One way to minimize this effort is function clone detection. Detecting whether a function is already known, or similar to an existing function, can reduce analysis effort. Outside of malware, the same function clone detection mechanism can be used to find vulnerable versions of functions in binaries, making it a powerful technique.

This work introduces a slim approach for the identification of obfuscated function clones, called OFCI, building on recent advances in machine learning based function clone detection. To tackle the issue of obfuscation, OFCI analyzes the effect of known function calls on function similarity. Furthermore, we investigate function similarity classification on code obfuscated through virtualization by applying function clone detection on execution traces. While not working adequately, it nevertheless provides insight into potential future directions.

Using the ALBERT transformer OFCI can achieve an 83% model size reduction in comparison to state-of-the-art approaches, while only causing an average 7% decrease in the ROC-AUC scores of function pair similarity classification. However, the reduction in model size comes at the cost of precision for function clone search. We discuss the reasons for this as well as other pitfalls of building function similarity detection tooling.

View More Papers

hbACSS: How to Robustly Share Many Secrets

Thomas Yurek (University of Illinois at Urbana-Champaign), Licheng Luo (University of Illinois at Urbana-Champaign), Jaiden Fairoze (University of California, Berkeley), Aniket Kate (Purdue University), Andrew Miller (University of Illinois at Urbana-Champaign)

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Read More

Progressive Scrutiny: Incremental Detection of UBI bugs in the...

Yizhuo Zhai (University of California, Riverside), Yu Hao (University of California, Riverside), Zheng Zhang (University of California, Riverside), Weiteng Chen (University of California, Riverside), Guoren Li (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Manu Sridharan (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside),…

Read More

Demo #9: Dynamic Time Warping as a Tool for...

Mars Rayno (Colorado State University) and Jeremy Daily (Colorado State University)

Read More