Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at Arlington), Gedare Bloom (University of Colorado Colorado Springs) and Habeeb Olufowobi (University of Texas at Arlington)

The landscape of automotive vehicle attack surfaces continues to grow, and vulnerabilities in the controller area network (CAN) expose vehicles to cyber-physical risks and attacks that can endanger the safety of passengers and pedestrians. Intrusion detection systems (IDS) for CAN have emerged as a key mitigation approach for these risks, but uniform methods to compare proposed IDS techniques are lacking. In this paper, we present a framework for comparative performance analysis of state-of-the-art IDSs for CAN bus to provide a consistent methodology to evaluate and assess proposed approaches. This framework relies on previously published datasets comprising message logs recorded from a real vehicle CAN bus coupled with traditional classifier performance metrics to reduce the discrepancies that arise when comparing IDS approaches from disparate sources.

View More Papers

Get a Model! Model Hijacking Attack Against Machine Learning...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

30 Years into Scientific Binary Decompilation: What We Have...

Dr. Ruoyu (Fish) Wang, Assistant Professor at Arizona State University

Read More

NC-Max: Breaking the Security-Performance Tradeoff in Nakamoto Consensus

Ren Zhang (Nervos), Dingwei Zhang (Nervos), Quake Wang (Nervos), Shichen Wu (School of Cyber Science and Technology, Shandong University), Jan Xie (Nervos), Bart Preneel (imec-COSIC, KU Leuven)

Read More