Mulong Luo (Cornell University) and G. Edward Suh (Cornell University)

Effective coordination of sensor inputs requires correct timestamping of the sensor data for robotic vehicles. Though the existing trusted execution environment (TEE) can prevent direct changes to timestamp values from a clock or while stored in memory by an adversary, timestamp integrity can still be compromised by an interrupt between sensor and timestamp reads. We analytically and experimentally evaluate how timestamp integrity violations affect localization of robotic vehicles. The results indicate that the interrupt attack can cause significant errors in localization, which threatens vehicle safety, and need to be prevented with additional countermeasures.

View More Papers

Demo #13: Attacking LiDAR Semantic Segmentation in Autonomous Driving

Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

Read More

Demo #10: Security of Deep Learning based Automated Lane...

Takami Sato, Junjie Shen, Ningfei Wang (UC Irvine), Yunhan Jia (ByteDance), Xue Lin (Northeastern University), and Qi Alfred Chen (UC Irvine)

Read More

Demo #1: Curricular Reinforcement Learning for Robust Policy in...

Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Read More