Yunpeng Luo (UC Irvine), Ningfei Wang (UC Irvine), Bo Yu (PerceptIn), Shaoshan Liu (PerceptIn) and Qi Alfred Chen (UC Irvine)

Autonomous Driving (AD) is a rapidly developing technology and its security issues have been studied by various recent research works. With the growing interest and investment in leveraging intelligent infrastructure support for practical AD, AD system may have new opportunities to defend against existing AD attacks. In this paper, we are the first t o systematically explore such a new AD security design space leveraging emerging infrastructure-side support, which we call Infrastructure-Aided Autonomous Driving Defense (I-A2D2). We first taxonomize existing AD attacks based on infrastructure-side capabilities, and then analyze potential I-A2D2 design opportunities and requirements. We further discuss the potential design challenges for these I-A2D2 design directions to be effective in practice.

View More Papers

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More

Explainable AI in Cybersecurity Operations: Lessons Learned from xAI...

Megan Nyre-Yu (Sandia National Laboratories), Elizabeth S. Morris (Sandia National Laboratories), Blake Moss (Sandia National Laboratories), Charles Smutz (Sandia National Laboratories), Michael R. Smith (Sandia National Laboratories)

Read More

Trusted Verification of Over-the-Air (OTA) Secure Software Updates on...

Anway Mukherjee, Ryan Gerdes, and Tam Chantem (Virginia Tech)

Read More